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ABSTRACT

From theoretical studies of two-phase flow of gas-particle mixtures in

rocket nozzle@, the governing equations for two-dimensional and axisymmetrical

flown have been derived. Characteristic equations have been put into finite dif-

ference form and a mathematical model has been developed for a general interior

point in the supersonic flow field. The subsonic and transonic flow fields have

been investigated. To integrate the subsonic, transonic, and supersonic solutions,

a mathematical model will be programed for the IBM 7090 computer that will de-

termine nozzle performance for given nozzle contour and motor conditions.
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I. INTRODUCTION

Liquid or solid particles, or a combination of the two, exist in the exhaust

products of solid propellants when powdered metals are used as fuel additives.

These additives are included in the propellant formula for several reasons, the

foremost being to increase the energy release of the propellant and to prevent

combustion instability.

However, several important deleterious effects occur when condensable

products are formed in the exhaust gases as a result of having metal additivies/

in the propella it. Significant performance losses occur because the drag of the$
gas on the particles is irreversible; the thermal-energy content of the particles

transfers to the gas by convection and, to some degree, by radiation, which re-

quires a finite amount of time. Since the particles pass through the nozzle very

rapidly, this energy transfer does not have time to take place completely, and

a significant amount of the thermal energy of the particles is lost. Impingement

of particles on the nozzle wall, affecting the heat transfer rates and causing

erosion of the wall, alters the internal configuration of the nozzle and results in

a change in performance.

To minimize these effects, it is necessary to predict the effects of various

geometric and gas-dynamic parameters on the performance of a gas-particle

mixture. The objective of this study was to develop an analytical technique for

determining the effects of particles on nozzle performance and design.

I. SUMMARY

This report presents a theoretical discussion of the two-phase flow of

gas-particle mixtures in rocket nozzles and shows the derivation of the govern-

ing equations for two-dimensional and axisymmetric flows. Characteristic

Page I
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II, Summary (cont.)

equations are put into finite-difference form. A numerical solution procedure,

developed for a general interior point in the supersonic flow field, has been

programed for the IBM 7090 computer. Correctness of the computer program

has been verified through hand calculation of the numerical solution derived for

the IBM 7090.

A method has been developed for determining the subsonic flow field on the

basis of a one-dimensional sinkflow approximation. The transonic flow field has

been approximated by a power-series solution of the linearized system equations

for constant kinetic and thermal lags of the particles.

A method is then suggested for integrating the subsonic, transonic, and

supersonic solutions into a computer program with which nozzle performance for

given chamber conditions and nozzle contour can be determined.

This report indicates that status of gas-particle-flow studies as of February

1962. Since that date significant progress has been made on a program that in-

tegrates the subsonic, transonic, and supersonic solutions into one IBM 7090 com-

puter program with which overall nozzle performance can be evaluated. The pro-

gram enables study of several particle sizes and chemical species. The thermody-

namic and flow properties of the gas and particles are evaluated as a function of

temperature. Frozen or shifting chemical equilibrium can be studied by specify-

ing the appropriate speed of sound as a function of gas temperature. Studies can

be made at any point in the nozzle if a supersonic starting line can be determined

by the use of other techniques. Currently, this program has been limited to con-

ventional do Laval nozzles.

III. TECHNICAL DISCUSSION

A. EQUATIONS GOVERNING GAS-PARTICLE MIXTURES

1. Basic Assumptions

Page 2

_____-- S



Report No. 0162-OiTN-i6

III, A, Equations Governing Gas -Particle Mixtures (cont.)

Derivation of the equations governing gas-particle mixtures

is given in Appendix A. These equations were derived on the basis of the follow-

ing assumptions:

a. The particles are spherical and all the same size..

b. The total mass of the gas-particle mixture is constant.

c. The total energy of the gas-particle mixture is constant.

d. The internal temperature of the particle is uniform, and
the particle specific heat is constant.

e. The gas and particles exchange thermal energy by con-
vection only.

f. The gas obeys the perfect-gas law, has a constant
molecular weight, and has constant specific heats.

g. All external forces except pressure of the gas and drag
of the particles are neglected.

h. The gas is inviscid except for the drsg it exerts on the
particles.

i. The particles do not interact with each other.

j. The volume occupied by the particles is negligible.

Page 3
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III, A, Equations Governing Gas-Particle Mixtures (cont.)

2. Governing Equations

For two-dimensional (a = 1, cr • = 0) and axisymmetric (o y, = I)
V y

steady flows, the governing equations are:

Pg (Ug)x + p (v). + u (Pg)x +  = .yg()y 

P.(u +P(v) +U(P +v(PP_ -

p px plpy p p x plPpy y 

Pg UgUg )x + vg(ug)y]+ App(Ug-Up) + (Pg)x =0 (3)

Pg ug(vg x +vg(vg) 1 + App(vg -v)+(Pg) 0 (4)

ug(P) x + V(P) a 2 ug(Pg )x +v P) y - AppB 0 (5)

up(Up)' + vp(u ) A(u - Up) (6)
p px p py g p

up(vp)x +V p(Vp) = A(v -vp) (7)

u (h ) + V (h ) =- -2 AC(T -Tg) (8)
P px p py T p g

P pgRT (9)

Page 4
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III, A, Equations Governing Gas -Particle Mixtures (cont.)

T p= f(h P) Tabulated, (10)

2 (11)a =yVRTg

2 (u + vg 2)

2
a

T g

A =.7-- (14)

pp

B g(UgU)2 ( 2 C (T-T) (15)

C

C=- p2  t6

9 9a P 5

Cz t 6'
7 . ... .
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III, Technical Discussion (cont.)

B. CHARACTERISTIC EQUATIONS

By the use of the method of characteristics as discussed in Appendix

B and developed in detail in Appendix C, the characteristic equations for the above

system of quasi-linear partial differential equations (equation i through 8) were

found to be:

1. Along Gas Streamlines

v

uh Vg (17'!

Pg[ugdug + vgdvg]+ dPg -App[(ug -up) dx + (vV vdy]

dP dp Ap B dx~L -= (19)

2. Along Gas Mach Lines

dv U V 9 +
2 2 (20)

u -ag

(Ugdy-vgdx) [&pBdx -ugdPgj+ a2 {App [(Lg -Up)dy - (v, -vp)dx] dx

+Pg vgdug-ugdvg-7 o-r 9Wdy-v dx) dx + dP dy =0 (21)

Page 6
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III, Technical Discussion (cont.)

B. CHARACTERISTIC EQUATIONS

By the use of the method of characteristics as discussed in Appendix

B and developed in detail in Appendix C, the characteristic equations for the above

system of quasi-linear partial differential equations (equation I through 8) were

found to be:

1. Along Gas Streamlines

V

g

Pg[u dug + v gdvg]+ dPg " -A"p[(Ug 9 - dx + (vV - dy]

dP dp Ap B dx

TTM - Y= (1)

2. Along Gas Mach Lines

d Uv + a2%/ T.

2 2 (20)
u -ag

(Ug dy -Vgdx) [ppBdx - UgdPg+ a 2 {App [(Ug -up)dy- (Vg -V) dx] dx
• V

+Pg [vgdig-ugdvg - cy g (ugdy -Vgdx) dgx + dP dyj "0 (21)

Page 6
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III, B, Characteristic Equations (cont.)

3. Along Particle Streamlines

v (22)
dx u

P (23)
updu = A(ug - up) dx

dv = A(v -Vp) dy
Vp gp

2 (25)
udh 2 AC (T - T )dx

p p p g

(26)d4 = 0
p

(4) P= u p 
(27)

(4') x -or P 
(28)(px =  ppp

This system of characteristics is totally hyperbolic if the flowv
is supersonic (MX1), and partially hyperbolic when the flow is subsonic. Hence,

the flow in the supersonic portion of the nozzle may be obtained by use of a nu-
merical procedure based on the above system of characteristic equations. How-

ever, the subsonic and transonic flow must be obtained differently, since the

characteristics are only partially hyperbolic in such regions.

C. SUBSONIC SOLUTION

Because of the elliptic nature of the governing equations for gas-
particle mixtures in subsonic flow, a solution could not be obtained for the two-

dimensional and axisymmetric flow equations. In approximation, the subsonic

flow was assumed to be one dimensional. The following system of equations was

then derived (Appendix D), subject to the same assumptions as for the two-

dimensional and axisymmetric cases.

Page 7
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III, C, Subsonic Solution (cont.)

du U U
= A ( g  p) (9)

Up

dh 2 T T
= -. AC ( P(3

u
p

d u U d ( a r e a )w u - i ) A C ( TTw d c - " 9 '' u 9- "p

+A{gUgUp) +U (U 9- u  (31)

2

a

0 2
Tg=Tg -( +[(h ~h + UZ> JL (13)g pg pg

S

P g 34
g

P p RT 9(35)Pg : g R g 
1

P p 
(36)

U areap

T : f(h p) Tabulated, 
(37)

area = f(x) 
(38)

Page 8
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III, C, Subsonic Solution (cont.)

The first three differential expressions can be solved by techniques

such as the Adams or Runge-Kutta methods once starting values are assumed at

some location where the flow velocities are small and gas-particle equilibrium

may be assumed.

Since lines of constant properties in the subsonic portion of a de Laval

nozzle are concave downstream, the area in these equations should be based on the

spherical sector determined by the distance to the vertex of an equivalent cone

which is tangential to the wall of the nozzle at each point. This is equivalent to

a sink-flow solution, where the location of the sink varies with the position in

the nozzle and the slope of the nozzle wall, as illustrated in Figure i.

y

x R-

Figure t. One-Dimensional Sink-Flow Model

Thus, the subsonic geometry would be specified by giving the wail location y and

slope 0 as a. tabulated function of x. The area as a function of x is determined as

follows:

R _, (39)
s i n P

Page 9
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III, C, Subsonic Solution (cont.)

x = x'- R(-cosO) (40)

area = 2rR2 ( i- cose) 41)

By using the above relationship between x and area, the subsonic

solution may be carried out to a point where the solution begins to diverge

because of the term. To perform this solution, the total mass flow must
M -i

be estimated and must subsequently be corrected after the sta-:ting line in the

supersonic region is determined.

wV = 4 + w (42)g

The gas mass-flow rate may be estimated from the chamber stagnation condi-

tions by assuming that the gas-particle mixture is in equilibrium and by using

the constant-lag one-dimensional analysis presented in Appendix E to determine

the velocity and density at some downstream cross section, such as the nozzle

throat, of an equivalent perfect-gas flow.

g = p u area (431
g g

T 0 + 121

1

Pg

Page 10
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III, C, Subsonic Solution (cont.)

2

2 ygRTgU (46)
g E (46)

(T 9 + 1)

(area) I 2 ( Y -1 2 2( Y -(1)
(area)* I - Z,

+ g 1 D
E- 9 D (48)

1+ g (49)
i+ '- -

w C
g pg

ci.

L=1 +3 .1 ( I -I)K (51)

Cpg

If the nozzle throat is chosen as the reference cross section, then Lt * *.I

and (area) t .(area) Equations (43) through (46) then reduce to

g -g+ 1 go(

g1

Pg Pgo + ] (53)

1y ZY

21V g R T ° g 
(54)

U -Yg, 1) E

.Pa g 0 (55)

Page it
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III, C, Subsonic Solution (cont.)

To evaluate the above expressions, a value for the kinetic lag, K, must be as-

sumed. With some experience, a reasonable average value of K between the

entrance and throat may be chosen. However, as a first approximation,

K may be chosen as unity. Since P is known, iv can be calculated when

* is known. Hence, all the parameters necessary for the subsonic solution cang
be determined.

D. TRANSONIC SOLUTION

The one-dimensional sink flow solution does not converge near Mach 1,

and the method of characteristics cannot be used where the Mach number is less

than i. Thus, a different approach was necessary in the transonic flow regime.

The particle kinetic and thermal lags were assumed to be constant, and the

analysis shown in Appendix E for a constant-lag one-dimensional gas-particle

mixture was used to obtain a modified specific heat ratio, Y 9, and Mach number,

FA, of the gas, which includes the effects of the particles on the gas. The Sauer

transonic flow approximation discussed in Appendix F was then used to obtain the

gas velocity components in the supersonic regime where the Mach number is only

slightly greater than 1. The other gas and particle properties can then be found

along this starting line by the use of the following procedure. A starting line hav-

ing all properties known is available for use in the supersonic characteristic

solution.

The transonic flow regime was broken into two regions of constant

lag: the first from the end of the sink-flow regime to the throat, and the second

from the throat to the starting line. This is illustrated in Figure 2.

Page 12
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III, D, Transonic Solution (cont.

Pi P2

Sink Flow Supersonic Starti.
Line ULn

/ ys

RegRe ion I ego 2

Figure 2. Constant-Lag Transonic Flow Model

This model permits different wall radii of curvature to be used upstream,

pand downstream, p., of the throat. In Appendix F, the gas flow field

near Mach i is described by the following relationships.

2

(x, Y)ax+( Y+ Oa 2(56)

(+1) a x (T+ 1)2 a 3

V -X ) (571

( +b) g P(5!

a / -0+ b)(59)
V(Vg + 1) p.Y

Page 13
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1II, D, Transonic Solution (cont.)

where 6 = 0 for two-dimensional flow andb= I for axisymmetric flow, and u and v

are nondimensional perturbation velocities. The actual velocity components of

the modified gas flow are giver by the foJiowng expressions containing u. and v.

u (x,y) = (I* 1 + u) (60)

v (x,y) = a, v (61)

a* 2 R T (62)
(v7+1) go

The actual velocity components of the gas in the gas-particle mixture are de-

termined from the following relationship, wherein E is defined as a one-

dimensional flow parameter with constant lag:
1

u =E u 63)
g

2

v 9 E ( (64)g

The value of K (one-dimensional particle velocity lag) used in Region I

(Figure 2) is determined from the sink-flow solution along the sink flow line.

When the entire gas-particle flow field is finally determined at the throat, the

value of K at the throat may be found. An average value on K between the sink

flow line and the throat can then be established, thus determining the Region I

flow field more accurately. This procedure should be repeated until the average

value of K no longer varies from trial to trial. Region 2 can be solved in the

same manner by first choosing K as the value at the throat from the Region i

solution. When the starting line is determined, an average value of K in

Page 14
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III, D, Transonic Solution (cont.)

Region 2 can be repeated in the same manner as for Region I. When the flow

fields in Regions i and 2 are completely determined, the gas velocity components

on the supersonic starting line are determined.

Next, it is necessary to make the total mass flow assumed in the sink-flow

solution compatible with the total mass flow in the supersonic region. This may

be done by integrating the total mass flow across the starting line to obtain the

supersonic mass flow. The assumed total mass flow in the subsonic sink-flow

solution should then be set equal to the calculated total mass flow in the super-

sonic region, and the entire subsonic and transonic solutions should be repeated

to obtain a new starting line and supersonic total mass flow. This procedure

should be repeated until the subsonic and supersonic total mass flows become

equal; the supersonic solution may then be initiated.

The particle velocity components in the transonic region may be found by

using the method of characteristics, since the particle streamlines, which are

also characteristics, exist in subsonic as well as supersonic flow. By choosing

several points on the sink flow line as starting points, the particle properties

along the streamlines through these points may be found by using numerical

techniques. The geometry for this procedure is illustrated in Figure 3.

Limiting Particle

Sink Flow Line Streamline

Supersonic Starting

t

Figure 3. Transonic Characteristic Curves

Page 15
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III, D, Transonic Solution (cont.)

The derivation of the characteristic equations for the determination of the particle

properties along the streamlines is shown in Appendix C, where p is the particle-P

stream function.

v

u
p

u du A(u -u )dx (65)U p P -A U -p)

v pdv p=A(v -V p)dy (66)

updh= -L AC ( Tp-Tg)dX (67)

d~p = 0 ,68)

This system of equations can be solved by assuming that all variable coefficients

are average values and by putting the equations into the following finite difference

form suitable for computer evaluation:

v (69)

Ax uT
p

u= A u. up ,x70
Up -

'6 A Ay (71)= V
p

p

phUP (72)

Page 16
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III, D, Transonic Solution (cont.)

*p may be evaluated along the sink flow line to establish a value of *p, which,

from equation (68), remains constant along the streamline, thus determining

Vp along the supersonic starting line. By using the procedure shown in Appendix

C, 'p along the sink flow line may be evaluated as follows.

dp =* (p)x dx + (p ) ydy (73)

d p =a pp (updy - vpdx) (74)

The value of p along the sink flow line may be found by using the sink-flow solu-

tion, and u and v may be determined byp p

u = Ku (75)
p g

v = Kv (76)
p g

where u and v are determined from the transonic approximation along the sinkg g
flow line, and K is derived from the sink-flow solution along the sink flow line.

The value of pp along the supersonic starting line may be found by solving (74)

for p.

d*JP p a Up dy - v p dx) 
(77ppPy~i (77)

The values of P and pg along the supersonic starting line can be found by

numerically integrating the two characteristic equations which are valid along the

gas streamlines from the sink flow line to the starting line. This will establish

Page 17

5



Report No. 0162-OiTN-16

III, D, Transonic Solution (cont.)

a system of gas streamlines in the transonic region in the same manner as the

particle streamlines illustrated in Figure 3 are established. By using the deriva-

tion of the characteristic equations in Appendix C, the equations necessary to de-

termine P and p are

V
F d (78)
g

Pg[ ugdug + vdVg ]+ dPg App[(ug - up) dx + (Vg - vp) dy] (79)

dP dp Ap Bdx
- - - (80)

gP 9 g g g Pug

For the gas in transonic flow, the equations in finite-difference form are

V

Ax(81)g
&p -A- F'a-u)A +(~~)y -7r AV] (2p=Ap[( % A~x + ( b-y I)y- Fg[% A~ g Vg] (82)

g p p g U g

A-p BjTAx

a gg g

Thus P and pg can be determined along the starting line to the same order of

approximation as was involved in finding u and vg.

Once all the flow properties have been found on the starting line, the total

mass flow across the starting line may be found by integration. If this total mass

flow is different from the assumed subsonic total mass flow, the subsonic total

Page 18
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III, D, Transonic Solution (cont.)

mass flow should be set equal to the total mass flow through the starting line,

and the entire subsonic and transonic solution should be repeated. When the

total mass flow through the starting line finally equals the subsonic total mass

flow, the supersonic starting line is sufficiently determined to continue with

the supersonic solution by the characteristic method.

E. SUPERSONIC SOLUTION

In supersonic flow, the equations are totally hyperbolic, and the

characteristic curves are all real. Hence, the flow field can be determined by

a numerical technique based on the characteristic equations derived earlier.

As discussed in Appendix B, to obtain the solution in a region of a flow field, an

initial data line that is nowhere characteristic and along which all the flow pro-

perties are known must be determined. This line is the supersonic starting

line discussed in section III, D and must be determined in a region where the

Mach number is greater than i.

Once the starting line has been determined, the supersonic solution

can be initiated. There are several types of flow regions within the supersonic

regime, and each must be handled differently. Points near the axis must be

treated in a special manner because of the term (1/y) in several of the equations.

Solid and free boundaries must satisfy the added condition of known flow angle

and known pressure, respectively. In the region between the limiting particle

streamline and the nozzle wall, no particles are present and the gas flow re-

duces to the case of rotational perfect-gas flow. The flow near a limiting

particle streamline must also be handled differently, since pp = 0 on one side of

this streamline and is finite on the other side. The final type of flow is that of a

general interior point where none of the above special situations prevail. The

procedure for determining the flow in the neighborhood of an interior point is

developed in detail in this study. The types of points discussed are illustrated

in Figure 4.

Page 19
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III, E, Supersonic Solution (cont.)

The nozzle wall is determined by specifying x and y coordinates and

the slope at a discrete number of points, as illustrated in Figure 4. A left Mach

line is then forced to go through each wall point to determine the flow properties

at the wall point, as illustrated at point 3 for a solid boundary with particles and

at point 7 for a solid boundary with no particles. A right Mach line is then pro-

jected out into the flow field from each wall point to continue the solution. The

size of the characteristic net can be regulated by varying the spacing of the

specified wall points.

The starting line is broken up into several discrete points from which

the characteristic solution is initiated. The size of the intervals chosen along the

starting line determines the size of the characteristic net near the nozzle throat

where property gradients are generally large. A relatively small interval is re-

quired along the starting line.

A characteristic coordinate system is indicated in Figure 4 for the

solution as it proceeds down the nozzle. As indicated, right Mach lines are

numbered from I through i, and left Mach lines are numbered from I through j.

Right Mach line i initiates on the starting line at the nozzle axis, and a right

Mach line of increasing number initiates from each point on the starting line up

to the wall, where a right Mach line then initiates from each wall point. Left

Mach line i initiates on the starting line at the wall, and a left Mach line of in-

creasing number passes through each point on the starting line until the nozzle

axis is reached. Left Mach lines then are initiated at each point on the nozzle

axis where a right Mach line from a nozzle wall point intersects the axis, as

indicated in Figure 4. Thus, every point in the characteristic solution can be

specified by a coordinate (i, j) in the characteristic coordinate system.

Now that the characteristic nets in the supersonic region are

specified, it is necessary to develop a numerical solution procedure for each of
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III, E, Supersonic Solution (cont.)

the points discussed above and an overall calculation scheme for determining

the flow field in the entire nozzle. Point 1, the general interior point, has been

considered in great detail, and the finite-difference equations necessary to

solve for such a point are discussed in section III, F.

F. FINITE-DIFFERENCE EQUATIONS

As discussed in Appendix C, it was necessary to solve the particle

continuity equation by a mass balance on the characteristic control volume. The

remaining equations were found to constitute a characteristic system that is

hyperbolic. The finite-difference form of these characteristic equations was

derived in Appendix G for the characteristic net shown in Figure 5. Points 3, 4,

and 5 were located by geometric considerations of the characteristic curves, as

discussed in Appendix H.

II

3

Initial Data
Curve ---

2 Figure 5. Interior-Point Characteristic Net
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II, F, Finite-Difference Equations (cont.)

To account for more than one size or species of particle, six discrete

particles were accounted for by introducing the streamline of each additional

particle as a characteristic curve along which the particle compatibility equations

are valid. Particle parameters appearing in gas compatibility equations were

summed for the six particles to account for their effects on these equations.

The equations necessary to calculate the gas and particle properties

at point 4 were derived as shown in Appendix G and are discussed in detail for a

general interior point in Appendix H. These equations include the properties at

point 4, which, as a first approximation, were assumed to be the same as the

properties at the intersection of the initial data line and the characteristic line

along which the particular parameter was evaluated. For subsequent calculations,

the properties at point 4 were considered to be equal to the results of the previous

calculations at point 4. In this manner, an iteration procedure was developed for

the flow properties at point 4. A numerical example also was derived, as shown

in Appendix I, to demonstrate the procedure for determining a general interior

point.

G. INTERIOR POINT NUMERICAL EXAMPLE

To check the validity of the theory and the correctness of the IBM

7090 computer program, a numerical example was calculated for a general in-

terior point (Appendix I). A solid propellant containing aluminum was selected

as a sample for this calculation. The particles in the exhaust stream contained

aluminum oxide particles of six different sizes. The calculation was made for

a point i ft downstream of the nozzle throat and 0. 5 ft from the nozzle axis in

an axisymmetric nozzle.

Tabulated values of f and g as functions of Reynolds number are

valid for spheres of any chemical species and size and may be considered to be
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III, G, Interior Point Numerical Example (cont.)

the proper relationship for future calculations. The values of y g and cpg as

functions of gas temperature were estimated for this particular gas and should

be re-evaluated for future cases. The temperature -enthalpy relationship for

the aluminum oxide shown in Appendix I may be used for future calculations in-

volving aluminum oxide particles. The remaining flow properties were estimated

to allow a numerical calculation to be made and are not indicative of the type of

flow field that would normally occur.

The numerical-solution procedure shown in Appendix H was followed
in achieving both the calculated and the IBM 7090 computer solutions. The re-

sults obtained through the two methods were in agreement, indicating that the

computer solution is correctly programed. The flow properties calculated at

the new point were all found to be of the correct order of magnitude and chang-

ing in the proper direction for flow down a diverging supersonic nozzle. There-

fore, the theoretical development appears accurate and the computer program

appears to correctly calculate the flow field at a general interior point.

IV. CONCLUSIONS

The model developed in this Technical note for the two-dimensional and

axisymmetric flow of gas-particle mixtures appears to adequately represent

the actual flow field for spherical particles inthe exhaust gases. Such is the

case when the particles are aluminum oxide. However, not all particles are

necessarily spherical, or even approach it, and care must be exercised when

considering such flows.

The theory developed here, when completed, will enable the determina-

tion of the performance characteristics of conventional de Laval nozzles and

Page 24

a



Report No. 0162-OiTN-16

IV, Conclusions (cont.)

unconventional nozzles, such as the plug nozzle. Particle trajectories and im-

pingement points can be accurately determined. Nozzle thrust and specific im-

pulse can be calculated, thuxs allowing nozzle evaluation studies to be made to

determine how to design nozzles for gas-particle mixtures.

V. RECOMMENDATIONS FOR FUTURE WORK

The work described herein is the result of a study of the flow of gas-

particle mixtures in two-dimensional and asixymmetric rocket nozzles. The

program is far from complete, however# Further work needs to be programed

for the following specific items:

i. A more detailed analysis of the subsonic solution.

2. A more detailed analysis of the transonic solution.

3. Development of a solution procedure for the special cases of supersonic
flow mentioned in section III, E.

4. Development of a computer program for subsonic, transonic, and super-
sonic flow, uniting into one program the solutions relating to the entire
nozzle.

5. Analysis of particle trajectories.

6. Development of an analysis procedure for unconventional nozzles.

7. Consideration of heat transfer to the wall.

8. Consideration of chemical nonequilibrium in the gas phase.

9. A systematic computer analysis of the effects of nozzle geometry.

10. A systematic computer analysis of the effects of gas-dynamic parameters.

ti. Correlation with an experimental program.

12. Re-evaluation of the theoretical analysis based on the experimental corn-
paris on.

13. Development of a complete method for designing any type of nozzle for
gas-particle systems.
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VI. NOMENCLATURE

A. ENGLISH SYMBOLS

A Particle parameter in characteristic equations

TXS Parameter in particle finite-difference equations

area Area of one-dimensional gas-particle system nozzle

a Speed of sound in a perfect gas

a* Speed of sound at sonic conditions

a.. Coefficient of system of quasi-linear partial-differential equations

B Parameter in gas characteristic equations

T S Parameter in particle finite-difference equations

b. ij Coefficient of system of quasi-linear partial-differential equations

C Parameter in characteristic equations

CD  Drag coefficient

_C. Parameter in particle finite-difference equations
S

C(or) Characteristic curve parametric representation

c. Coefficient of system of quasi-linear partial-differential equations
S

c pg Specific heat at constant pressure of the gas

plSpecific heat at constant pressure of the particles

D Constant-lag one-dimensional flow parameter

M7 Vector drag force
f

D G Parameter in gas finite-difference equations

D. Parameter in characteristic compatibility equations derivation1

ds Differential arc length in radius of curvature calculation

dx Differential distance along nozzle axis
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VI, A, English Symbols (cont.)

dy Differential distance normal to nozzle axis

d( ) Total differential of a quantity

E Constant-lag one -dimensional flow parameter

T Vector force

f Ratio of CD to CD for Stokes' flow

f (x) Coefficient in power series solution for @ (x, y) in transonic flow
0

f2 (x) Coefficient in power series solution for # (x, y) in transonic flow
f4 (x) Coefficient in power series solution for # (x, y) in transonic flow

g Ratio of Nu to Nu for Stokes' flow

h Particle heat-transfer film coefficient

h Enthalpy of the gasg

h Enthalpy of the particlesp

K One-dimensional particle velocity lag

KI , KII Parameters in gas finite -difference equations

k Thermal conductivity of the gasg

k. Parameter in characteristic compatibility equations derivation1

L One -dimensional particle thermal lag

Li  Notation for a system of quasi-linear partial -differential equations
LI  Parameter in particle mass balance

L2  Parameter in particle mass balance

M Mach number

1T One-dimensional constant-lag modified Mach number

MI , M1  Parameters in gas finite-difference equations
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VI, A, English Symbols (cont.)

m Slope of a line in geometrical characteristic net

m Density of a particle per unit volume of particlep

Nu Nussult number

n Index in system of quasi-linear partial-differential equations

n Unit normal vector

n. Unit vector in ith direction1

P Gas pressureg

P. Any property in finite-difference equations
1

Pr Prandtl Number

Q Heat added to gas-particle system control volume

QIP Q, Parameters in gas finite-difference equations

i Velocity vector

R Gas constant

Re Reynolds number

Ri p RII Parameters in gas finite-difference equations

r Particle radius
P

Si p SII Parameters in gas finite-difference equations

s Throat wall location in transonic flow model

T G  Parameter in gas finite-difference equations

T Gas temperatureg

T Gas stagnation chamber temperature in one-dimensional modelgo

T Particle temperatureP

T Particle stagnation chamber temperature in one-dimensional model
po

t Time
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VI, A, English Symbols (cont.

U Parameter in gas finite-difference equations, and nondimensional

x-direction velocity component in transonic flow

u Perturbation x-direction velocity component in transonic flow

u x-direction velocity component in transonic flow

u x-direction gas velocity componentg

ugi Gas velocity component in ith direction91

u x-direction particle velocity component
p

u . Particle velocity component in ith direction

uJ Flow property in system of quasi-linear partial-differential equations

UJ n+1 Value of uJ after n + lth iteration

uJ Value of uJ after nth iteration
n

V Parameter in gas finite-difference equations and nondimensional
y-direction velocity component in transonic flow

V Volume of gas-particle system control volume

v Perturbation y-direction velocity component in transonic flow

v y-direction velocity component in transonic flow

v y-direction gas -velocity componentg
v y-direction particle -velocity component

p
p One-dimensional gas mass-flow rateg

WOne-dimensional particle mass-flow rate
p

X Parameter in gas finite -difference equations

x Coordinate along nozzle axis

x C Direction cosine of characteristic curve

Y Parameter in gas finite-difference equations

y Coordinate normal to nozzle axis
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VI, A, English Symbols (cont.)

YS Radius of nozzle throat in transonic flow model

y Direction cosine of characteristic curve

Z Parameter in gas finite-difference equations

z Coordinate normal to x-y plane in nozzle

B. GREEK SYMBOLS

a Mach angle, gas viscosity parameter, or Sauer-line velocity
gradient

P Initial data curve in method of characteristics
0

I I  Solution curve in method of characteristics
1

y Specific heat ratio of the gasg

g 9 One-dimensional constant-lag modified specific heat ratio

A( Finite difference of a quantity

Ax Finite change along nozzle axis

Ay Finite change normal to nozzle axis

Denotes two-dimensional or axisymmetric flow in Sauer's
approximation

Location of coordinate system in transonic flow

Slope of characteristic curve for two variables

Slope of characteristic curve for two variables

n Slope of characteristic curve for n variablesn

0g Angle of the tangent to a gas streamline
g

0 Angle of the tangent to a particle streamline
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VI, B, Greek Symbols (cont.)

X Linear multiplying factors in method of characteristics

Angle of a line in geometrical characteristics net

g 9 Gas viscosity

1o Gas viscosity parameter

73. 14159...

Pg Gas density per unit volume of gas

Pp Particle density per unit volume of gas

Ps Radius of curvature in transonic flow

Indicates a summation

0' Denotes type of flow, two dimensional or axisymmetric

ay Denotes type of flow, two dimensional or axisymmetric

Ir Angle for determining radius of curvature

O(x, y) Gas velocity potential function in transonic flow

1Particle stream function
p

C. SUBSCRIPTS

G Gas streamline

g Gas property

go Gas property at stagnation chamber conditions

i Index

ij Index

Index

m Midpoint of initial data line
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VI, C, Subscripts (cont.)

p Particle property

po Particle property at stagnation chamber conditions

S Particle streamline

Stokes' Stokes' flow regime where R <ie

t Nozzle throat

I Right running Mach line

II Left running Mach line

D. SUPERSCRIPTS

j Index for flow variables

*Sonic conditions

- Average value of a quantity, or a vector quantity

Velocity components in transonic flow model

E. OTHER

div Vector operator

dt( ) Total derivative with respect to time
8 Partial derivative with respect to timeat

YX Slope of a line in x-y plane

ln Natural logarithm

)x Partial derivative with respect to x

( )y Partial derivative with respect to y

Relative velocity vector between gas and particle(qg -)

I ( )I Absolute value of a quantity
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VI, Nomenclature (cont.)

F. UNITS OF PHYSICAL PARAMETERS

C Specific heat at constant pressure Btu/lbm-*R
p

f Ratio of C to CD for Stokes' flow dimensionless

gRatio of Nu to Nu for Stokes' flow dimensionless

h Particle enthalpy Btu/lbmp

m Particle density per unit volume of particle Ibm/cu ftp

P Gas static pressure lbf/sq in.g

Pr Prandtl number dimensionless

r Particle radius, based on spherical particles micronsp

R Gas constant Btu/lbm-*R

Re Reynolds number dimensionless

T Gas static temperature ORg

T Particle static temperature ORp

Ug Axial gas-velocity component ft/sec

u Axial particle -velocity component ft/sec

v Normal or radial gas-velocity component ft/secg

v Normal or radial particle-velocity component ft/sec
p

x Axial coordinate ft

y Normal coordinate ft

a Exponent of gas-viscosity expression dimensionless

Ng Specific heat ratio of the gas dimensionless

I* g Gas viscosity ibm/ft-sec

Coefficient of gas-viscosity expression lbm/ft-se--(°R)a
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VI, F, Units of Physical Parameters (cont.)

Pg Gas density ibm/cu ft

pp Particle density per unit volume of gas ibm/cu ft
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APPENDIX A

DERIVATION"OF EQUATIONS [ GOVERNING GAS-PARTICLE MIXTURES

A gas-particle mixture is described by the equations for conservation of mass,

conservation of energy, momentum balance, equation of state for the gas,

particle drag, particle heat balance, and particle enthalpy-temperature relation-

ships. Thi,' appendix derives these equations on the basis of following assump-

tions:

i. Only one particle size is present, or some type of integrated particle

distribution is performed, and the particles are spherical.

2. The total mass of the gas-particle mixture is constant.

3. The total energy of the gas-particle mixture is constant.

4. The internal temperature of the particles is uniform, and the
particle specific heat is constant.

5. The gas and particles exchange thermal energy by convection only.

6. The gas obeys the perfect-gas law, has a constant molecular weight,
and constant specific heats.

7. All external forces except pressure of the gas and drag of the particles
are neglected.

8. The gas is inviscid except for the drag it exerts on the particles.

9. The particles do not interact with each other.

10. The volume occupied by the particles is negligible.

The following derivations of the equations are based on studies by Kliegel:*

* Kliegel, J. R. and G. R. Nickerson, Flow of Gas -Particle Mixtures in Axially
Symmetric Nozzles, STL TM-7106-00Z3-MU-000; also ARS preprint 1713-b1,
presented at the Propellants Combustion and Rockets Conference, April 26-28,
1961.
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Appendix A

To begin the derivation, a control volume V enclosed by a surface A is

considered. This control volume is illustrated by Figure A-I below,

z

-- y

x
Figure A-I Control Volume for System Equations

The control volume is fixed in space and the gas-particle mixture flows through

it. The mass flux through the surface A is

J' [ g Og F + Pp -(! O dA (A-it)

where pp is the mass of particles per unit volume of gas. The time rate of

change of mass in V is

I O9 a at dV(A-Z

V

A mass balance for V results in

J[ i+ .dV +f[ pg + pp q>p - dA=O (A-3)

V A
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Appendix A

When the divergence theorem is used, the surface integral of Equation

A-3 can be transformed to a volume integral, and Equation A-3 becomes

f I + pE+ div (Pg dg + d= 0 (A -4)

Since this equation must be true for any size volume, it can be written as

[f+ div (P ) [.R+ div P

However, there is no mass interchange between the gas and particles in V;

consequently, each member of Equation A-5 must be identically zero. Thus,

the conservation of mass equation for V take the form

t+ div pgqg) =0-)

+ div Pp = 0 (A-7

The momentum flux through A in the ith direction is

f [I u~i q On+ P qpn dA (A -8)

The time rate of change of momentum in V in the ith direction is

-f - (pggi ] dV (A -9)f pgUgil + ppUp

V
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Appendix A

Through the assumption that all body forces except the pressure of the gas

and the drag are negligible, there are no viscous or body forces acting on

surface A, and the only forces present are pressure forces. The component

of this pressure force in the ith direction is

-fgPgnidA (A- W)

A

A momentum balance for V gives

d )
. =t Momentum

-rA ndA f A[(pgugi g*n+n+ ( ppU. qp nl dA (A-li)

(%Ipugi ) +7Ft-(ppupj dV
V,

When the divergence theorem is applied to Equation A- ti, the expression for

the ith component of the momentum balance becomes

f[F(pgug+ ppupi) +div ( g + pgg (A-i)

Op1
+ x-J dV = 0

Since this equation must hold for any volume, the momentum balance becomes

pgUgi pgag idiv +u-- + 33 = 0 (A- 13)
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Appendix A

The flux of enthalpy and kinetic energy through A is

h {h+ ~~g2] Pg~~l [h +#II I Pp qpn dA, and (A -i14

the time rate of change of enthalpy and kinetic energy in V is

II 8 f 2TF Pg( -T I-~p hp+ 1 dV (A-15l
V

The time rate of heat addition to V is

f t--dV (A- 16)

V

An energy balance for V gives

8 r[ I Q81 1 1 rI.
dV= Pg " -h. + pp hp ) dV

V V

(A-. 17)

+ A I {h9+ ziigI2 P.gagfl+ [hP +z I p pqp ] dA

When the divergence theorem is applied to Equation A.- 17

+ div Pg hg + g g+ pphp+ 4I,, ] } dV -0 (A-18)
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Appendix A

Since this equation must hold for any volume, the energy balance becomes

'Q pg h + 'g I qg + P, ph, + I21

+ div [Pg (hg +*'2L-gI z + P, (h, + z)i 1 i]( 9

With the assumption that the gas obeys the perfect gas law and has a

constant molecular weight and constant specific heat, the equation of state

of the gas can be written as

P 9 R T (A-20)gg g

Next, a spherical particle of constant size is considered in the gas

flow field as shown in Figure A-2.

f 

Y
x 

I

Figure A-2. Particle Momentum and Heat Transfer Model

Remembering the assumption that all body forces except for pressure of

the gas and particle drag are negligible, the only force exerted on the particle

is a drag force, D1 , due to the relative motion between the gas and particle.

A particle momentum balance gives

D d (m r3 p (-21
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Appendix A

where m is the particle density per unit volume of particle. The drag on ap
spherical particle is given by

15f CD 7rrp T g (A-2)

where (S-q) = (4 -

Equating Equations A-2I and A-22 results in

d--8r3p 'q 'q (A-23)

p p

To simplify the particle momentum and energy balances, the following relations

with Stokes' flow regime (where the Reynolds number is less than f) are defined

as: /

f = (A-24)
(CD) Stokes

Nu (A-25)
g =(Nu)tokes

InStokes'flow regime, CD = 24/Re, and Nu = 2. Therefore,

GDZ= 24_f__ I (A-26)

Nu = Z (A-27)
g

d 9  ILgf ( )d p_ 9T g C-q (A-28)

m r
p p
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Appendix A

An energy balance for the particle gives

dQ =h4rr' ( - -T (A-29)

k k-g
h = 2rg Nu = r  (A-30)

p p

Qp= m h 3 h (A-3i)

dh g ( - T (A-32)-p- 3 Ppr (Tp g
dt gm r

pp

The temperature of the particle depends on its state; either a liquid, a liquid

in the process of solidifying, or a solid, and is uniquely related to the enthalpy,

T = f ( h) (A-33)

The gas-particle system is now completely defined by Equations A-6,

A-7, A-13, A-09, A-20, A-28, A-32, and A-33. For adiabatic steady flow, the

two-dimensional and axisymmetric forms of these equations are obtained by drop-

ping all time derivatives and expanding the above system of equations. By let-

tingar = i for two-dimensional flow, C = y for axisymmetric flow, x denote the

longitudinal axis, and y denote the vertical or radial axis, these equations re-

duce to the following:

p (u) + P (vg) + gPg) + v (p )y = a v (A-34)
g g x g gy g gx g gyY4-

p +P p) p)y + U(P) + v (p)y a y O' p (A-35)
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Appendix A

Expanding Equation A-13 and combining with the expanded form of

Equation A-Z8 gives

Pg u.g(uAg)x + vg (Ilg)y},4*App (Ug - u) + (Pg)x = 0 A-36)Pg [U(lV) x +)l+Api w uguv

P g [ugvg)x + Vg (Vg)y ] + App (vg - Vp) + (Pg)y = 0 (A-37)

A = 9 (A-38)
m Pr

The particle momentum and energy equations become

Up (u ) x + Vp (U) A (ug - U) (A-39)
P p x p Py g p

(Vp) x + vp (V )y = A (vg - v) A-40)

u P (hp)x + Vp (hply = - 2 AC (Tp - T) A-41)

FCr

Expanding the system energy equation (Equation 19) and combining with

the gas and particle continuity equations, the gas equation of stzt., the

expanded form of the system morrentum equation, and the following gas

enthalpy -temperature relationship gives

h = c T + Constant
g pg g

u(gx + g (gy L [Ug (P~ + Vg (pg)y ]- APpB = 0 (A..A44.

a = R T (A.-.45)

B ( -1) 2 u +(v -V V)2 +-C (T2 T ] (A-46)
g p~u 9~ g p) +TC p -
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Appendix A

The gas equation of state and particle enthalpy-temperature relationship are

the same.

The equations governing a gas-particle flow field are thus found to be a

system of eight, quasi-linexr, nonhomogeneous partial differential equations

of the first order, shown as Equations A-34, A-35, A-36, A-37, A-39, A-40,

A-41, and A-44. The constants A, B, and C in these equations are defined by

Equations A-38, A-42, and A-46. The gas equation of state is given by

Equation A-20, and the particle equation of state by Equation A-33.
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APPENDIX B

METHOD OF CHARACTERISTICS

The governing differential equations often reduce to quasi-linear partial-

differential equations of the first order for functions of two independent variables.

A quasi-linear partial differential equation of the first order is defined as one that

is nonlinear in the dependent variables but linear in the first partial derivatives of

the dependent variables. Such a system of n equations can be written as:*

L. a. + b 2+ c = 0 (B -i)
1 ij ax ij ay i j=1It n

where the superscript j identifies a particular dependent variable, and the co-

efficients a ij, bij, and ci depend on x, y, u .. u. When expanded, this
system of equations becomes:

L 1  al u +': 2 +a u n + b u I+ b u 2..+ b .n+ C :0it I 1 x I"an x 1t y 12 y Iny

I 2 n2 a1 u 22 u+n +  2 +b u +...+b 1 U + c2=0 (B-2)
L2 -- aZi ul aZZ..+a ux b+...+a+nb(y -y ny

L =a u I +a U +...+a u n +b u I +b u 2 + +b n +c=ox n2 x nn x ni y .n2 y nn y n

When such systems are hyperbolic, the method of characteristics can be used

to obtain the desired solution. A treatise on the method of characteristics ap-

plied to fluid-flow problems has been written by Courant and Friedrichs, **

and this discussion is based on that treatise. The simplify presentation, the
theory will first be developed for a system of two equations, and then the re-

sults will be applied to systems of n equations.

In accordance with accepted convention, when an index is repeated, the sum-
mation is carried out with respect to that index.

* Courant, R., and K. 0. Friedrichs, Supersonic Flow and Shock Waves, New
York, Interscience Publishers, 1948.
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Appendix B

The concept of characteristics arises from the following relationships.

A linear combination af + bf of the two partial derivatives of a function f canx y

be considered as the derivative of f in a direction given by dx:dy = a:b. Figure

B-i illustrates this point. In the figure, the curve C(U) is given in

x x (a)
y y()

(x, y)

!-' x

Figure B-i Characteristic Curve

parametric representation as a function of some parameter a. Thus, at any

point (x, y), x.and ya are the direction cosines of the curve C (a). If x:
y: a:b, then df/du=f (dx/dO)+f y(dy/dc) =f Xa +fY r , andaf +bf

y xx y

is the total derivative of f along this curve.

Next, a system of two equations for the two dependent variables u(x, y) and

,(x, y) is considered:

L =A u x+ Bu+ C v +D +E 0L1 = 1 u x  B y 1 x 1ly I

(B-3)

L 2  A 2 ux + B 2 uy+ C2 vx + D 2 v +E = 0
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Appendix B

In addition to these equations, there are two additional equations,

du = ux dx + uy dy
(B-4)

dv - vxdx + vy dy

that are valid for continuous functions having continuous derivatives. The

equations of B-4 are applicable to the functions considered here because these

functions are assumed to be continuous and have continuous derivatives. A

linear combination, L, of L and L 2 is sought:

L =X Li +%X L 2 =0 (B-5)

so thatin this differential expression for L, the partial derivatives of u and v

combine to give total derivatives of u and v in the same direction. Such a

direction, if it exists, depends on the point (x,y), as well on the values of u and

v at that point, and is called characteristic. Expanding L as indicated in

Equation B-5 results in the following:

(XiA 1 + X2 A2 )u x + (%.iB + X2B 2 )Uy + (XIC 1 + XZC2)v x

+ (%1 D1 + %D 2 ) v + (XIE + >X2E 2 ) = 0 (B-6)

Suppose the characteristic direction is given by curve C (o') with direction

cosines x. and Y. . Then, for u and v in the expression for L to be differ-

entiated in the direction of C (a) only, by the analysis above concerning afx
+ bfy, the following proportionality must be satisfied:

S1A i +X 2A 2: + X 2 B2 ) =(ICI+ X : + X = x :y~r (B -7)(AII 2A : (X.1 B 1 +kB)= (X.1 C1 +XA2C2) :(X 1 D1 + X2 D2 ) =x Y B7

since the coefficients of the derivatives ux , uy v , and v in L are given by the
y

respective members of the above proportion.
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If the functions u and v satisfy the differential equations L1 and L 2 at

the point (x, y), the following two homogeneous linear equations for Xi and 2

are obtained:

X (Alyc - B1 X ) + XZ (Azyg - BZX ) = 0

(B-8)

'i(CIy0' - DiX0') + X2 (C 2 yo' - D 2 X ) = 0

For B-8 to have a nontrivial solution, the determinant of the coefficients of

X1 and 2 in the above equations must vanish.

(Aiyo. - Blx,) (AzYa -B Xo)

= 0 (B-9)

(CIy - DXor) (C 2ya - D2 xy)

(A iC 2 - A C )Y2 - (A D ~A D) +( - B C1) x~

+ (BD 2 - B D ) xz = 0 (B-10)
2 2

ayc - 2bx y +cx2a .0. (B-I)a ~ ~ a yx
If ac -b 2 > 0, then no real solutions for a exist-, and the char-

or.
acteristic curves C (or) are imaginary. Differential equations that result

in imaginary characteristic curves are called elliptic. If ac-b 2 a 0, one

real characteristic direction exists through each point, and the system is

called parabolic. If ac-b2 < , two real characteristic directions exist through

each point, and the system is called hyperbolic. From here on, only hyper-

bolic systems are considered. Introducing the slope

Yor d (B-12)
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Equation B-Il can be written as

at 2 - 2bt + c = 0 (B-13)

which, for hyperbolic systems, has two distinct real solutions t + and t-.

Hence, the two characteristic curves C (ar) satisfy the two ordinary differential

equations

F d and dy
+ =- - (B-14)

Since the roots + and - are functions of x, y, u, and v, the hyperbolic

character of the system depends on the particular functions u (x,y) and v

(x, y) under consideration. When a solution u (x,y) and v (x,y) is inserted

into Equation B-14, the equations dy/dx = t+ (u, v, x, y) and dy/dx = t-

(u, v, x, y) are two ordinary differential equations of the first order that

define two families of characteristic curves, or simply characteristics, C+

and C- in the (x, y) plane.

In the case of two dependent variables u and v, four equations were

found relating ux 1 uI vx , and vY,

Li AIu +Bu +Cv +Dv +E 1  0LI Al x  Bly lx ly

(B -15)

L2 = A2ux + B2uy + C v + D2vy + E = 0

u xdx + uy dy du

v dx + v dy =dv

By using Cramer's Rule for a system of n nonhomogeneous linear equations in

n unknowns, the partial derivatives of u and v may be determined. Cramer's

Rule states that if the determinant of the coefficients of the unknowns, D, is
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D.
different from zero, each unknown has a unique solution given by ki z D ,
where D. is the determinant obtained from D by replacing the ith column

of b by the nonhomogeneous terms, and k. is any one of the partial derivatives1
of u and v. In the present case of two dependent variables discussed above, D

is found to be

A 1 B1 C 1 D1  (A dy - BIdx)(CIdy - DIdx) B1 D 1

D A 2 B 2 C2 D2  (A2dy - B2 dx)(C 2dy - Dzdx) B2 D 2

dx dy 0 0 (dydx - dydx) 0 dy 0

0 0 dx dy 0 (,dxdy - dydx) 0 dy

(AIdy - BIdx) (C dy - D dx)
D = (dy)2  (B-16)

(A2dy - B2 dx) (C2dy - D 2 dx)

By comparing this solution for D with Equation B-9, it is found that D = 0 along

characteristic curves. This result is valid along only the characteristic curves,

Thus, the solution for ki = D./D will not exist along the characteristic curves1 1

unless D i = 0, thus placing k.into the indeterminant form:

D. 0

k. D 1 0 (-?ki = _r = l- (B-17)

Solving the determinants D. = 0 results in a system of compatibility equations

equal in number to the number of partial derivatives in the original system of

equations. The number of compatibility equations that are independent equals

at most the number of dependent variables in the original system. By observing

the nonhomogeneous term in the equations of B-15, it can be seen that these com-

patibility equations will contain only total derivatives of u and v. Thus, the system

of partial differential equations has been replaced by a system of total differential

equations valid along the characteristic curves.
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So far, a fixed solution u (x,y) and v (x,y) has been assumed. How-
ever, the equations of B-i5 no longer depend explicitly on this solutionsince
all the coefficients are known functions of x, y, u, and V. By a slight change
in interpretation, the equations of B-15 and the compatibility equations can
be considered as a system of four equations for the determination of x, y, u,
and v. Replacing the original system (equations of B-3) by this character-

istic system is the basis of the metbod of characteristics.

The method of characteristics can now be extended to a system of n
iifferential equations by analogy to the above case of two equations. Equation
B-i for such a system is repeated here as

L a.. + b. + c. =0

As in the case of two equations, the following equations result from the con-

tinuous nature of the assumed solution for uj:

dui = uxJ dx + u ydy (j = i, ... , n) (B-18)

Again, a specific solution uj is assumed, and curves C (or) are sought so

that a linear combination XiL i of the differential equations can be formed
in which differentiations occur only along the curves C (a).

L= iLi = lL +2 L 2 + ... +X L n 0 (B-19)

Expanding L as indicated in Equation B-19 yields the following:

(Xia+ a + .. +Xn a ) u + + b21 + . +n bn) u
221 n n x nn y

+ (Xa a2 + b a22 + • % a nn2)x + (Xb 12 + 2 b22 + + nbn2) uy (B-20)

+. +(X a +Xa+.. +\nan) u n + (X b + Xbn+ +X b n
1 n22n nnnx tIn 2n n nn) =0

y
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As in the case of two equations, the copfficients of uj and uj must be in direct
x y

proportion to the direction cosines x0.and y., of C (a) if L is to be differentiated

only along C (ay). This proportionality takes the form

(Ifa 1 1 +X2a21 + .. +an) : b ii +X bz + .. nbn n = xi : Yy,

(Xa 12 +. 2a22 + .. +nan 2 ) (%b 1 2 + 2 b22 + n +b n 2 ) = x~y yZi

(B-Zi)

(.i ain + 2 azn + .. +Xnann) (I iIn +XZb 2 n + +nbnn) =x: 'Y

Equation B-21, when rearranged with%i as the unknown, takes the form

X.(a, y- b 1 1 xy) +), 2 (aZ1 yf - b2 .xCr) +.. +X (a YCY - bnXe) = 0

. (a 2Y - b, 2.x,) +X2 (a 2 2y - bZ2 xa) +.. +Xn(a n 2yo - bzXG) = 0I orCr n xd= 0 (BS-'2Z)

Xi(ainy# - bin.x) +X2 (a?ny - bnX) . +X iannyG - b) - 0

which can be written as

X(aijy bij- z 0 (jl,..., n) (B-23)

For the solution of the system of equations defined by Equation B-23

to be other than zero, the determinant of. the coefficients of . must

vanish:

I(aijy - b ..x) =0 (B-24)

When expanded, the determinant takes the form

(a, y, - biX a) (a I2y¢ - bi 2 jc ) ... (a inY1 - bnXny)

(a 2,IYo - b2,.x) (a 2 2 yr - b2 2 x 0,) "*" (aznYr - b 2 rnxq) 0 (B-25)

(aniY0 - bni c ) (any b a bn.X0 ) ... (any - x
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The expanded determinant results in an algebraic equation of the nth degree

for y /x = dy/dx, giving n roots tn which determine n characteristic

directions. If all n roots are distinct and real, the system is totally hyper-

bolic. There are then n families of characteristics C (or) satisfying then
ordinary differential equations

(B -26)

each family covering the domain of the (x, y) plane under consideration.

As in the case of two equations, the following equations relating the x

and y partial derivatives of uj were found:

L. a. .uJ + b. .uj + c. = 0 ( . (From Equation B-i)

1 ij x ij y I j=i, n

uJ dx + uj dy = dui (j=I, . , n) (From EquationB-8)

% y

Again, by using Cramer's Rule for the system of 2n linear nonhomogeneous

equations in 2n unknowns, the partial derivatives of uj can be determined.

By denoting any of the partial derivatives of uJ by ki, the solution becomes
ki a Di/D, where D is the determinant of the coefficients of the equations of

B-i and B-18, and D i is the determinant obtained from D by replacing the
ith column of D by the nonhomogenous terms. Exactly as in the case of two

equations, D is found to be the same as the determinant of Equation B-24,

which is equal to zero, and defines the characteristic curves C (0). Thus,n
for k. to ex-.-- D. must be zero, and a system of 2n compatibility equations1 1

in terms of the total derivatives uj are obtained, of which at most n are

independent. Thus the general system of n partial differential equations for

n variables has been replaced by a system of n total differential equations

valid along the n characteristic curves, C (or).
n

Next, the initial value problem is formulated for the above eystem of

hyperbolic differential equations. Assume a curve ro is given in the (x, y)
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plane, &nd continuous values of u j arbitrarily prescribed alongr. Then, the

problem is to determine, in the neighborhood of To, a solution uj of the system

that takes on the prescribed initial values alongro . By replacing the original

system by the characteristic system, the system reduces to total differential

equations along the characteristic curves. In general, these equations are non-

linear, and each is coupled with some of the others. For this reason, a solu-

tion by a numerical iteration technique becomes necessary. The compatibility

equations, each valid along one or more of the characteristic curves, can be

put in finite difference form, and the equations of the characteristic curves

themselves can also be put in this form. Then, by moving along a characteristic

curve, the initial values of u j alongr 0 can be extended into the domain enclosed

by the outermost characteristic curves passing through the initial data curve

r0 . By continuing in small steps along the length of r o , a new curve, , can be

obtained with all the values of u j determined along this curve, as shown in

Figure B-2.

02YI

Value \ /\

iuJ g i ve

Figure B-2. Characteristic Initial Value Line and Solution Net
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The above considerations result in the concepts of domain of dependence

and range of influence. The domain of dependence of a point P is the region in

the (x,y) plane, bounded by the outermost characteristics passing through the

initial data line, in which the solution of the initial value problem can be

established. The range of influence of a point Q on the initial value line is the

totality of points in the (x, y) plane which are influenced by the initial data at

point 0. This region consists of all points whose domain of dependence contain

the point 0; therefore, it is the region between the two outermost characteristics

passing through the initial point Q. The range of influence and domain of de-

pendence are illustrated in Figures B-3 and B-4. C

y y C2

C3C 3

Figure B-3 Figure B-4
Domain of Dependence Range of Influence

For a solution to be possible, the initial data line cannot be characteristic

at any place unless initial data are given along two intersecting characteristic

curves. Several types of domain with differenE types of initial data lines can be

solved; however, only the domain in which the initial data line is nowhere char-

acteiristic is of interest in the present discussion.

By means of the method of characteristics just described, many com-

plicated systems of partial differential equations can be solved, if the system

is found to be quasi-linear and hyperbolic. These conditions are frequently

encountered in fluid flow problems.
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APPENDIX C

DETERMINATION OF THE CHARACTERISTICS OF
A GAS-PARTICLE MIXTURE

The complexity of the equations describing a gas-particle mixture requires
that a solution be obtained by other than conventional methods. The system of
eight first-order, quasi-linear, nonhomogeneous, partial-differential equations
can generally be solved by using the general theory of the method of characteristics
as outlined in Appendix B. After an initial effort to solve the entire system of
eight equations, it was found that four distinct characteristics curves did exist,
but only seven distinct compatibility relationships were found. Therefore, the
particle continuity equation was solved separately by the introduction of a particle
stream function. The resulting relationship was then considered to define the
particle density pp throughout the flow field, since there was no compatibility
equation describing the variation of p p. The solution was then found for the particle

continuity equation as follows:

+ I (apv) = 0 (C-i)(pUp) x C P- (pp Y

The definition of the stream function was chosen as

( p)y = appup (C-2)

(P). =-OPv (C-3)px p

where Or = I for two-dimensional flow, Cr=y for axisymmetric flow, x is the
longitudinal axis direction, and y is the vertical or radial direction for
two-dimensional or axisymmetic flow, respectively. The definition of a particle
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streamline is

dy V p (C -4)dT _ u

p

The total derivative of*F isp

A = *xdx + *Vdy (C-5)

d* p =aup pdy 4ppvpdx (C-6)

Along particle streamlines, therefore,

d = 0 (C-7)p

The remaining seven equations form a system of equations that can

be solved by the method of characteristics. The characteristic curves are

found to be the gas streamline, the particle streamline, and the two conven-

tional gas Mach lines. For supersonic flow, the system is totally hyperbolic,

and for subsonic flow partially hyperbolic.

Since the seven quantities under consideration are assumed to be

continuous functions, there also exist seven equations of the form

duj = u dx+ u ydy(j = 1,..,7) (C-8)x y

where u j represents u g, v g, pg , P g, u p, v p, and h p. Thus, there exist

the following fourteen equations for the determination of the fourteen

partial derivatives of the seven dependent variables:
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P (u + +P (v + +u (P ) + v (P )y or P - v (C0-9)
g 9x g g y g gx g gy y

p u 9(u 9)X + p v 9(u ) + (P 9)x - Ap p(u1 - 1 ) (C0-1t0)

Pg9ug9(vg9)X + P v (v)9y+ (P 9)y = - Ap p(v 9 v ) (C-l i)

119 (P 9) x+ v 9(P 9) - a 2u 9(p ) - a 2v 9(p ) Ap pB (C0-12)

u (u ) + v p(u p) y A(u 9-t ) (C -13)

* p pX + p py g~ p ( 4

* (v + +v (h )y =AC (T T (0-14)
p px p py g p

(h ) x+(v 9) - AO( -T)9 (C-17)

(Pp9) x + p )y~ py gp9(-8

(P 9 )X dx + (P ) ydy dP cl (0-19)

gup) x g up)y gd C-O

(v ) dx + (v ) dy =dv (C-1)
gx g y g

(p ) Xdx + (p ) ydy dp (0 -12)

gxPagy g
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whe re

A- 9  g (C-23)A= mr Z
p p

B=(g-) Ug P )2 + (vg - )2 + C (T -Tg) (C-24)CZ

C;=g pg (C-25)

The gas and particle equations of state are

Pg = p RT (C-26)g ~gg

Tp = f(h p) (Tabulated) (C-27)

As discussed in Appendix B, the characteristic directions themselves

are found by solving the determinant

ai d- - b 0 (C-Z8)

where a.. and b.. are the coefficients of.the x and y derivatives of the

seven dependent variables in the seven original system equations,

L. = a..j u x + b..ju y + c.i = 0 (i = 1,., 7) (C-29)
ae y 4
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Pg 0 Ug9 0 0 0 0

Pg9ug9 0 0 1 0 0 0

0P 9u 9 0 0 0 0 0

a j0 0 -a 2 ug g 0 0 0 (C-30)

0 0 0 0 u p 0 0

o 0 0 0 0 u P 0

0 0 0 0 0 0 P

0 Pg 9 V 0 0 0 0

Pg9Vg9 0 0 0 0 0 0

b a 0 Pg9vg9 0 1 0 0 0 (C-31)

0 0 -a 2v 9v 9 0 0 0

0 0 0 0 V p 0 0

0 0 0 0 0 v P 0

0 0 0 0 0 0 v
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When Equations (30) and (31) are used, Equation (28) becomes

Pdy ((u vdy g 0 0 0 0pg a- -9 (U - Vg

(C-32)

p-(U -dy V 0 0 dy 0 0 0

0 pg(Ug Vg) 0 -1 0 0 0

-a(U g a- Vg U 9-g

0 0 -a 2 (u vg ( dy v 0 0 0 0

0 0 0 0 (u0 v 0 0

0 0 0 0 0 (U0-v) 0

0 0 0 0 0 0 (Uk-yv)

Expanding Equation (32) and solving for dgives

2 -ugv aJ_ a3
dy 2 idy -1. dy

From Equation (33), seven characteristic directions were obtained, the

following four being distinct:

a) Gas streamlines,

v
d= A (C-34)

g

~Page 6
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b) Gas Mach lines,
2

d uv +a 2  M -i (C-35)

U -a
g

c) Particle streamlines,

v

dy _ p (C-36)
a- -

p

To determine the compatibility equations that must be valid

along the characteristic curves, the determinant of the coefficients of

the 14 equations of the complete system was modified by replacing one

column at a time by the nonhomogeneous terms, c. The system of

Equations (C-9) through (C-22) in matrix form is shown in Figure C-i.
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, -.-. ,bD
~P4 $:4 E-

> , P4 I

bO I .Pq :1 E- A bo bo w

I I.

X >4 X XD LXJba to Owjb $ 4 P~ 4 P; Pq'p

CY

IU

g4

pV4
.4-)

C.
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ca
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All blank spaces represent zeros. By replacing the columns one at a time with

the nonhomogeneous terms, seven compatibility equations were obtained, each

valid along a particular characteristic curve. Along gas streamlines:

dy - g (C-37)

g

Pg [UgdUg +vgdvg]+ dPg = -App[ (Ug-up) dX+ (Vg-vp) dyJ (C-38)

dP dp Ap pBdx (C-39)g dg ggC-9

Along gas Mach lines,

du v + aZY/MZ-i

dy -U 9 ........ (C-40)

u - ag

(Ugdy - vgdx)[ AppBdx - ugdPg] + a2 { App [Ug - up) dy

- Vg - Vp dx dx + pg [VgdUg - UgdVg-ay vg (ugdy-vgdxJ Jdx + dPgdy = 0 (C-4l)

Along particle streamlines,

dy (C -42)

p

updup = A(ug -u p)dx (C-43)

VpdVp = A(V - Vp) dy (C-44)

updh - AC (T - T) dx (C-45)
P pp g
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These seven compatibility equations were found when solving for the

following partial derivatives:

(u )x: (C-38) on gas streamlines and (C-4t) on gas Mach lines

(u ) : (C-38) on gas streamlines and (C-41) on gas Mach lines
gy

(v g): (C-38) on gas streamlines and (C-41) on gas Mach lines

(Pg)x: (C-38) on gas streamlines and (C-4t) on gas Mach lines

(p ): (C-39) on gas streamlines and (C-41) on gas Mach lines

(P ) : (C-39) on gas streamlines and (-41) on gas Mach lines

(P g) : (C-41) on gas Mach lines

(P ) : (C-41) on gas Mach lines

(uP )X : (C0-43) on gasrMch srlines

(Upy: (C-43) on particle streamlines

(V p) X: (C-44) on particle streamlines

(Vp}7: (C-44) on particle streamlines

(hp ) : (C-45) on particle streamlines

(hp ) : (C-45) on particle streamlines
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When the flow is supersonic, (M> i), the system is totally hyperbolic.

The original system of eight partial differential equations can be replaced by

the system of seven total differential equations valid along the characteristics

and by the definition of the particle stream function * .
p

In the subsonic flow regime where M < i, the gas Mach lines are imag-

inary. However, the gas and particle streamlines are still real and can be

used to determine the gas and particle properties if the gas velocity components

ug and v can be determined by some other procedure. A simplification of theg g
original system is thus obtained even in the subsonic and transonic flow regimes.

Page i I

cm



Report No. 0162-OiTN-16

APPENDIX D

GENERAL ONE-DIMENSIONAL FLOW OF A GAS-PARTICLE MIXTURE

In the application of the method of characteristics to the supersonic portion

of a nozzle, a starting line is required across the flow field in the supersonic re-

gion. To determine the starting line, the solution for the entire flow field in the

subsonic and transonic portions of the nozzle must first be derived. Since all the

characteristic curves do not exist in the regions with Mach numbers less than 1,

a different approach is necessary in these regions.

The only feasible approach is a general one-dimensional analysis in the sub-

sonic portion of the nozzle and a constant-lag one-dimensional analysis in the

transonic portion of the nozzle. The general one-dimensional analysis is discussed

in this appendix, and the constant-lag analysis is discussed in Appendix E. The

assumptions that pertain to the following discussion are the same as those made

for the axisymmetric case with the additional restriction of one-dimensional flow.

Mass
Momentum ___-__x

Energy

x, Area x + dx, Area + d (Area)

Figure D-1. General One-Dimensional Gas-Particle Model

In the one-dimensional control volume shown in Figure D-1, a mass

balance results in

*g pgu Area (D-1)

*g =pu Area (D-2)
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A momentum balance on V yields the equation

pUg (ug)x + pU(u p)x + (Pg)x = 0 (D-3)

An', energy balance on V results in the relationship

\kg [Cpg(Tg.Tgo) + u 2 ] + [(hpe.hpo) +Tup 0 (D-4)

where the subscript o denotes chamber stagnation conditions. The equation of

state of the gas is

Pg = pgRTg D-5)

A momentum balance on a sp ,ericai particle yields the relationship

u(u) 3 C D Pg
ppx -m r (U u U (D-6)

p p g p) ug

and an energy balance on a spherical particle results in

U(hp)x 3h (Tp-T) (D-7)
p px m rP p g

where

CD = f (Re)

Re= 2rP Iug up IPg

k Nu

p

The equation of state of the particle was expressed in tabular form by the

relationship

T .- f (h ) (Tabulated) (D-8)
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When the system energy equation (Equation D-4) is solved for the gas temperature

T in terms of the remaining flow variables, the result is

r 1t 2 1 21 1u 2
T =T -- a I(h h ) + uf - .A (D-9)g go p ppo pi

g pg pg

By means of the gas and particle continuity equations, the gas equation of state,

the system energy equation given in Equation D-9, and the multiplier ug Area,w

the system momentum balance can be rewritten as g

RT * RT
9 (M 2 -0)(U ) + PFR - R(h ) -mA

g pg pg

(D-10)
where

U

a

As in the axisymmetric case, the following definitions apply:

CD  CD Re
f- D and (D- 11)

(C D) Stokes 24

Nu Nu
(Nu Stokes - (D-12)

Equations D-6 and D-7 can then be solved for (u p) x and (hp )x

du u -u

UK A ( P) (D- 13)

p

dh 2 T-T
= -P ) where (D-14)

p
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A=9 g f

- and (D-15)
m r

p p

C 9 pg (D-16)

PT

Substituting Equations D-13 and D-i4 in Equation D-1O results in

du ) Area ) (g-i)AC(Tp-Tg)

+ A {g (ug-up)2 + u. (ugP u (D-17)

2
a = y g RT.

Solving Equations D-i and D-2 for pg and p results in the following

relationships

g
Pg- u Area (D-i8)g

p
P = u Area (D- 19)

p

The gas pressure is found from the gas -equation of state

Pg = pg R T gD-Z0)

The shape of the nozzle determines the function

Area = f (x) (D-21)

the cross-sectional area of the nozzle.
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Thus, the general one-dimensional flow of a gas-particle system is

represented by the following system of equations.

du A u-u
d&x-E (D-22)

2dh 2 Tp-T 9 (D-23)

du r ' d (Area) ('- (. 2 1 (yg-i AC p-Tg)

~ ~I area - iu 2 a 3 2g Tp

+A {Yg(u .u p + upu .u,} i} (D-24.

a 9gR Tg9
2

M =

a

Area = f (X) (Given) (D-25)

C C 1D(D-26)

A- 9  A (D-27lA=Ir 2
rn r
pp

f = f (Re) (Given)

g = g (Re) (Given)

Pg= g (D..Z8\.Pg u u9 Area

I p {D-291Pp u Up Area
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T = f(hp) (Tabulated) (D-30)
P 2

rk p 1 2 1 __

T =T g - h og (D-31)
T ~ ~ ~ 0 T ,-:U - g

g go g pg.

Pg = pg R T (D-32)

Xgg

'Yg =f (T 9) and cg =: (T 9 Z'a-,bu'_.atud) (D-33)

g = Lo Tg (D-34)

In Equations D-Z2 through D-34, the quantities

P m r , T go, hpo, R, o. and a are all given constant parameters.

Equations D-22, D-23, and D-24 can be solved numerically in the

subsonic regime for up, h p, and u by any of several standard techniques,p g
such as the Adams' or the Runge-Kutta. method, provided that starting

values are assumed at some location where the flow veloezities are small

and gas-particle equilibrium can be assumed. The remaining flow variables,

Pg) p P, T P, Tg, and Pg, then can be calculated from Equations D-28 through

D-32, respectively. Thus, the entire one-.dimensior.ait subsonic flow fiej.d is

determined up to some valuie of M< t, "-ar M = i, the numerical solution

begins to diverge as a result of the ( -- ) term in Equation D-24.

Because of this divergence, it becomes necessary to consider a constant

lag one-dimensional gas-particle system to obtain solutions in the transonic

regions.
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APPENDIX E

CONSTANT-LAG ONE-DIMENSIONAL FLOW OF A GAS-PARTICLE MIXTURE

To obtain a transonic solution for a one-dimensional gas-particle mixture,

it was necessary to assume that the particle kinetic and thermal lags are con-

stant throughout the transonic regime. The particle kinetic and thermal lags were

defined:

u
K p  0 < K i (E-i)

go g

It was also assumed that the particles do not change phase in the transonic

portion of the nozzle. The particle equation of state was then expressed as

(h - )=c(T - ) (E-3)

where T = T in the chamnber.go po

The temperature of the gas, Tg, was found to be

T .

8 go g Cpg cpg

Substituting Equations (E-i), (E-2), and (E-3) in Equation (E-4) results

in the following expression for Tg:

T =TA( - 5)g go7 cpg
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p Z

where: D

,v c-

g .pg

The system momentum ba.lance was found. to be

RT ' v RT

g-4 t 'x w +- (1 U. ) (u ) - - (h 7A--9 Area)x=
g g P9 pg (E-6)

Substituting Equations E-.i), ,E-2), (E-3), and IE-5) in Equation (E-6) gives,

for the system momentum bala.nc.e,

d(Area.) _(a -) dg (E-7)

SEM E-8)

Wg pg

The particle momentum b;- axce was found t., be

dR A (Ug- uE-io)
UP

Substituting Equation (E-i) in Equation E-i0) gives

du ( K

K
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The particle energy balance was found to be

= AC Tp (E-i)

Substituting Equations (E-i), (E-2), (E-3), and (E-5) in Equation (E-12)

gives

du I (i-L)
A C A C KELcp1

Equating Equations (E-ii) and (E-13) gives

L c I(E-i4)

Equation (E-14) determines the relationship between the particle thermal

and kinetic lags in a constant-lag situation.

Equation (E-5) was solved for the ratio T 9/T to give

T ~ ~ ~ ~ g g 72(E -5

I = i +(-i) (E-5)

Equation (E-7) was considered at the geometric throat where

d(Area) _ d (Area) dx
(Area) dx - rea

and d du dx=> 0Ug

ug X g

Therefore E2 - H= 0 and I at the throat.

Pag 3(E-17)
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Therefore, from Equation (E-15) at the throat, where conditions are

denoted by *,

T T (E-18)
g (7g +1) go

Equation (E-7) was integrated in the following manner:

d(Area) -(M -1) d (Equation E-7)
(Area ug

K =2 Eu 2 2

2u

T =T u Dg go C pg

- 2 1E uzM = g

g go- Cpg D)

Eu du dud(Area) _ g g.

(Area) u Z u'YgR(Tg o  g DV) g

g go! C pg

In A E - D In T - In u + Constant (E-19)
(g -1)Dg g

Evaluating the above expression between a general point and the throat

where T = T *and M= I givesg g( +
(Vg + 1)

(Area) = + -+ z~ 1) 2(E2(O7
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The gas continuity equation, the perfect gas law, and the system

momentum equation were combined to determine the following pressure

relationship:

*g = pgu Area (E-2i)

dp du d (Area) = 0
g + g+0

p Ug (Area)

Pg =pgRT (E-22)

S Pg dT

d(Area) 2 du(Are) =(1W[ - ) -- A
7Area u (E-23)g

Combining the above gives

dP 2 du dT
0+ M - 0E-24)

g g g

In the same manner as Equation (E-7) was integrated, Equation (E-24)

was solved and evaluated between tlie general condition and the stagna-

tion chamber condition where P = P and T = T to give

g go g go g

12791~I 2  ~ 2  g (E-25)
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Substituting Equations (E-i5) and (E-25) into the perfect gas law gives

i
.,~, i -~(E-26)Pgo _ i+ M

P g

Combining the gas and particle continuity equations gives

gv P (E-27)

The solution of a one-dimensional gas-particle system under

constant-lag conditions is thus given by

I% + 1)

(Area) + ly ] Z (E-28)
(Area)* l

T T-1 2(E-29)

g

(E-30)-ILg-I-
Pg

gg
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-2 2M =E M (E-32)

2 2 2u =M a (E-33)

2

a2 RT (E-34)

= Ku (E-35)

T =(i - L) T + L T (E-36)p go g

-
p

Pp " Pg (E-37)

g

L(E-38)

S= D (E-39)
gV g

t+.- K 2 1
D * c I (E-40)

1+ p LI
g pg J

E C

E= i { [Yg (I -K) + K ]+ (-yg~ Zj' 1 L D} (E-41)
gc pg

Equations E-28 through E-31 are seen to be the one-dimensional isentropic

gas-dynamic relationships with Y and M replaced by the modified parameters

T g and IR, respectively. A gas-particle mixture in a constant-lag nozzle with no

phase change can thus be considered as a perfect gas with appropriately modified

specific heat ratio and Mach number.
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From Equation (E-I11) it is seen that, for constant lag nozzles,

du A (I -K) Constant
U~K

Thus, the assumption of constant lag imposes the restriction of constant

axial velocity gradient. Such a condition is approximated in the throat region of

most nozzles. The solution for constant-lag flow, therefore, shows that in the

throats of most nozzles the gas-particle mixture may be treated as a perfect gas

with the appropriately modified specific heat ratio and Mach number.
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APPENDIX F

TRANSONIC FLOW APPROXIMATION

By using the analysis of a one-dimensional gas-particle mixture under

constant-lag conditions, it was found that the gas-particle mixture could be

treated as a perfect gas with appropriately modified specific heat ratio and

Mach number. The solutions for transonic flow can therefore be obtained in the

same manner as for a perfect gas, since the two-dimensional gas-particle flow

in the throat region can be treated approximately as a one-dimensional flow, and

the actual specific heat ratio and Mach number of the two-dimensional flow can be

approximated by the modified parameters yg and 1 based on the one-dimensional

approximations. Several methods have been proposed for analyzing transonic

perfect-gas flow. Methods proposed by Sauer, Oswatitsch and Rothstein, and

Kliegel (References F-I, F-2, and F-3, respectively) appear to be practicable.

Sauer's method will be used until a better solution is available.

Figure F-I illustrates the geometry of the model considered by Sauer.

yxSonic Line 's"

\s

Figure F-i. Transonic-Flow Model
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The assumptions made for the model are as follows:

i. The gas is a perfect gas.

2. The flow is irrotational.

3. The flow is two-dimensional (b = 0) or axisymmetric (b 1).

4. The specific heats are constant.

By combining the continuity, momentum, and speed-of-sound equations for

such a flow field, the following equation was obtained:

- 2 - 2 2 _-2 -- -vu(a -u + v a -v vZ U + b a =0 (F-i)X y y

where u and 'v are the x and y components of velocity, and a is the speed

of sound. The energy equation is

'u + + h =constant (F-2)

27

Defining c. as the speed of sound where ( u + a Equation (F-3)

becomes

Z - -- Z-7 a (7=- (IF -4)

The dimensionless velocity components are defined by

- and V v= - (F5)
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In terms of U and V, (F-i) becomes

F, gir Ig UI -2 ]V iYg 4 -V

I + V -4 uvu
g g g
+6 79 + - (9 + *YZ 9 o

-Y - + 0

Y + (F-6)g

By limiting the investigation to the vicinity of the sonic condition where I i and
V ~ 0, U and V can be expressed in terms of perturbation velocities as

U=I+u and V = v (F-7)

where u and v are much smaller than 1. In terms of u and '. Equation

(F-6) becomes

V+ + Y -+ +1

g u (I+u) v-b 2 - u (u2 +v )0,,+, y V,. +% +i,

(F-8)
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As x and y approach zero, u and v approach zero. However, u X should not
V

approach zero. Equation (F-8) shows that as x and y approach zero, - and

vy approach zero. From the symmetry about the x axis, uy approaches zero

at y = 0. Substituting these limiting values into Equation (F-8) and neglecting
terms of higher order than the first in quantities which approach zero as x and

y approach zero, Equation (F-8) becomes

(7 + i) u u v (F-9)gx g y

For irrotational flow,

au _ (F-tO)

Hence, a velocity potential 0 (x, y) can be defined such that

u = x and. v = y (F-Ii)

The velocity potential can be defined as a power series in y, containing

only even powers of y because u is symmetrical about the x axis.

(x,y) fo (x) + f W 72 + f4 (x) 74 + (F-12)

u (xy)=(X) + f (X) f4 ( x) + ... (F-i3)

v (x,y) =y 2f 2 (x) y + 4f 4 (x) f 3 + .. (F-1)(x~y)~ =2(F-14)

where the primes denote ordinary differentiation with respect to x.
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Substituting the power series for u and v into Equation (F-9), equating

the sum of like powers of y to zero, and solving for f 2 (x) and f4 (x) gives

(x g + 1)f 'fo"

f4 (x) = g (1 0  ) (F-15)

.( 7g + i) (fo,f 2,, + fo,,ff ')

2 (3 +b) (F-16)

When y = 0, u (x, 0) = f0 (x), where u (x, 0) is the axial perturbation

velocity distribution along the x axis. If u (x, 0) is known, f2 (x) and f4

(x) can be determined, and the flow field would be established. For a

linear axial perturbation velocity distribution,

u (x, 0) = a x (F-17)

f2 (x) 2 (2 + b ) (F- .8)

- + 1)2f 4 (x) x
8(1 + 6) (3+6) F.bi)

(7g +) laz

u (x,y) = a x + y + ... (F-20)
2 (1 + b)

2x + a 3
v (x,y) = y + y +. (F-Zi0

(1 +b) 2( +b ) (3 +)

..2 1. 2 2The critical curve where M = I and (u + v ) = a* can be

determined as follows:

2 +2 2 -2 2- a* 2
u +v a* a* a V*a

~2 2
(l+u) +v =1

u = 0 (F-22)
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Therefore, the critical curve is found from Equation (F-20) to be

(Tg + i) a 2
g 2

2 (t + 6 ) (F-23)

To locate the coordinate system in the nozzle, let y at x = 0 be equal

to ys, and solve for C from Equation (F-23):

(7g +1I) a2

E=y ys (F-24)
2 (3 +6)

e is the distance from the geometrical throat downstream to the gas

dynamic throat where M = I.

Next, by using Figure F-2, determine the curvature of the nozzle

wall at the narrowest cross section. Curvature is defined as the change

of direction of the tangent to a curve per unit distance along the curve,

and the radius of curvature is denoted by ps.
0

Figure F-2. Radius -of-Curvature Modei
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tan T v v
S+u

L d tan T dv

p S VS

(7g + i) a x y 7 + i) a 3
v = gy+ _ __ Y

(i +) Z(1 +b ) (3 +b)

Ov Ov dx av

( 1 +1) a 2

TV (1+6 ) y

-( + a 2 (F-25)

P - (1 +6)

Until now, u (x, 0) was assumed known, and a nozzle-wall curve was

calculated to give this u (x, 0). Now, by inverting the above equations,

u (x, 0) can be determined from the wall properties at the narrowest

cross section. From Equation (F-25),

(1+ ) (F-26)

(g + Ps Ys

From Equation (F-24),

(g +1i) (1+6) Y,
ys / (F-27)+5 Y

= -7 ps (F-7)
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The flow field near the sonic line in the throat of a nozzle is thus

determined by the following relationships:

(7 g+ t) a 2
u(x,y)= ax+ ( y (F-28)

2 (0 + b)

(:7g+ i),, 2x (7g + ) 2a 3  3
v (x,y) =y + y (F-29)

(i +b) z (1 +b)(3 +b)

-- Y + (F-30)

z (3 + b ) Ps

(1 +b
a - y(F-31)

(7+ 1) ps ys

where ys and ps are geometric properties of the nozzle.

By using the modified specific heat ratio and Mach number defined

for gas-particle flow under constant lag with linear velocity gradient and

no phase change, the above equations can be used to determine the two-

dimensional or axisymmetric flow of a gas-particle system in transonic

flow,

u (x, y) = a (I + u) (F-32)

v(x,y) =a v (F-33)

* R T
a =g

(- +) (F-34)
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i

Ug u (F-35)

Vg v (F-36)

where E and 79 are defined in Appendix of this report.
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APPENDIX G

DERIVATION OF THE FINITE-DIFFERENCE EQUATIONS

Seven total differential equations were derived that are valid along the four

characteristic curves. Because of the nonlinear nature of these equations,

numerical techniques had to be used to obtain a solution. The seven compatibility

equations were put into finite-difference form and are presented in this appendix.

The remaining equations necessary to carry out the numerical solution by use of

a high-speed digital computer were also put into a form suitable for computation.

Three equations for particle properties were derived for a constant par-

ticle size. To account for the possibility of more than one particle size or

species, six discrete particles were allowed for in the numerical solution. This

was accomplished by considering the streamline of each additional particle as an

additional characteristic curve and by applying the particle compatibility equations

independently for each particle along its streamline.

The equations were put into a form suitable for calculation of an interior

point in the flow field. For special points, such as the nozzle axis, the nozzle

wall, the limiting particle streamline, and a free boundary, the same equations

apply; but the procedure for obtaining a solution must be modified. The character-

istic net for such an interior point is bounded by the initial data line and the two

Mach lines, as illustrated in Figure G-i.
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i

4G

Initial Data Curve

2

Figure G-i. Interior-Point Characteristic Net

In Figure G-1, functions evaluated along gas Mach lines are designated by sub-

scripts I and II, corresponding to right and left running Mach lines, respectively;

and functions evaluated along gas and particle streamlines are designated by G

(gas) and s (solid), respectively.

Along right and left running Mach lines, the characteristic and compatibility

equations are:

2 2-

dy u v g M I,

U - a
g

6 6

(ugdy-vgdX) [i=(AppB)dxugdPg + a L -

(G-Z)

+ Pg jVgdugugdVg-Cy v (ugdy-vgdx) dx + dP dy 0
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To integrate these equations, all properties were assumed to be constant at the

average value of the property along the line of integration. Equations G-1 and

G-2 then became

2 -2(' "), I= g g 2  -z (,)(I ) 3

u -ag

MAPg + QAu g+RAvg = S (C-4)

where the bar denotes average values, and

-2 (U .2+7 .2
M = L L.-2

a

2M IT A y - U9KI

Q 9 A g~

S2 - -

R -a Pg g

- -- 6 6

K lugAy - V g A X]

m r
pp
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B=(+ ([7g -?p)2 + C (7f - "Tg

C- C P
C pg
'T Pr

g = f (T ) and cpg -f (Tg)

Tabulated

f = f (Re) and -g (Re)

Re rpg ( -) + (2-V)

Pr = Constant

Ig = 90T 9IJ.g o-Tg

where go and a are constants,

Pg = pg R T (G-5)

Since Equation (G-4) is valid along both Mach lines, two equations

relating APg, A Ug, and Av were obtained:

MI APgI + QI A ugI +R I Avg I  =SI (G-6)

M P + gl+ Av =S

MII A PglI + QII uglI + R vgi SiI (G-7)
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Along the gas streamlines, the characteristic and compatibility

equations are

( v. ug(G-8)

6

Pg[ugdug + vgdvg + dpg =-{App [(ug-up)dx +(vg-vp)dy }(G-9)

dP 9 dp 9 6 ApBdx (G-i1)d7 .Y Pg - [ A u .

Si=i

In integrated form, these equations are

A - V (G- Ii)
X G Ug

A 7 AugG 7 A vo, = (G- 1 )

pgG -- APgG + TG (G-13)
a

j= Ig~

6

TG = -{ Aj7B ( g IL x
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Along the particle streamlines, the characteristic and compatibility

equations for each particle are

dy) vXdy = (G- 14)

S p

updu = A (u - u) dx (G-15)

vpdvp = A (vg - vp) dy (G-16)

udh = 2 2A - T ) dx (G-17)
ppp - g

In integrated form, these equations are

(L) -  P  
(G..18)

S U
p

PSP
Ax upS = X S A x (G -19)

A v = B, Ay (G..20)

Ahp S S A x (G-21)

pS p

2
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The particle-stream function equation, when solved for pp becomes

0p= ludy - vpx)
ppp

In integrated form, this equation becomes
Pp /2 * pi " Li 0P - L 2  z

P (LI + L 2 )-2Z

L 1 : 1 [ P~y 4
" y l )  vPC(X 4

" .XIj

L2=a 2 [p Y4 "Yz ' (pCx4 " xz)I

*p4 = * p2 + L2 (Pp2 + Pp 4 )

where, for two-dimensional flow,

1  2

and, for axisymmetric flow,

Cy =(y +Y 4 )

z T (Y2 + Y4 )
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Equations G-6, G-7, and G-IZ, relating the gas pressure and velocity

components, can be solved for these properties at the intersection of the Mach

lines to give

(Y-M X) (RI-MIIVG) - (Z-M 1 X) (RI - MI VG
Ug4 =(G-23)

S(I-MIU G" (RII - MIIVG) - (QII- MIIVG) (RI - MIVG)

(QI - MI UG) (Z-M X) - (Q1 - M1VG) (Y - MIX)
vg4 = (G-24)

(I - MI G) (RII -MIIVG) - (QII- MII'VG) (RI "MIVG)

Pg4 X U G ug4 V G Vg4 + Pg3 (G-25)

X DG +VG ug3 +VG vg3

Y = S 1 4 MI (Pgj - Pg 3 ) + 01 ugj + R, vg,

Z S II + M I (Pg2 Pg3) + QII Ug2 + RII vg2

The gas density at point 4 from Equation G-13 is given by

(Pg 4 - Pg3)
Pg4 =Pg3 + + TG (G-26)

yg Rg

where T G is defined above.
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Equations (G-i9), (G-20), and (G-2i) were solved for the particle velocity

components and enthalpy at point 4 to give

u 4 =U 5 +X Ax (G-27)

v 4 = V 5 + M7 Ay (G-28)

h =h + *'S Ax (G.-29)p4 p 5  S

The particle density at point 4, pp4p is given by Equation (G-22).

Thus, the original system of characteristic total-differential equations

has been put into finite-difference form, and expressions for all the flow

properties at point 4 have been obtained in a form suitable for computation.
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APPENDIX H

NUMERICAL-SOLUTION PROCEDURE FOR COMPUTER PROGRAM

I. GENERAL

The equations governing a gas -particle system have been derived, the

characteristic equations have been determined, and the characteristic equations

put into finite.difference form in the preceding appendixes. In this appendix, the

use of these equations is demonstrated for determining the flow properties at an

interior point in the flow field: any general point that is not on a solid or free

boundary, on the nozzle axis, or in the region between the limiting particle steam-

line and the nozzle wall. For these, slight modifications to the procedure are

necessary.

This procedure has been programed for the IBM 7090 computer. The com-

puter program follows the solution procedure outlined in this section.

The units of the physical parameters appearing in the solution are shown in

Table H-I. The given data and the solution are both expressed in these units.

Two types of data are needed for this solution: general and specific. The

general data (Table H-2) pertains to the entire nozzle calculation, and the

specific data (Table H-3) pertain only to the flow properties at the point under

consideration. The properties found at point 4 consist of:

i. Location of point 4 (x and y)

2. Gas properties; the same as the initial data

3. Particle properties; the same as the initial data.

The numerical solution is based on the characteristic net shown in Figure

H-I.

II. SOLUTION PROCEDURE

The detailed solution procedure for the location of point 4 and the calcula-

tion of the flow properties at that point is in the following sequence:

Page 1
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TABLE H- i

UNITS OF PHYSICAL PARAMETERS

C specific heat at constant pressure Btu/Ibm-ORP

Yg specific heat ratio of the gas dimensionless

ratio of CD to CD for Stokes' flow dimensionless

g ratio of N to Nu for Stokes' flow dimensionless

h particle enthalpy Btu/lbmp

m particle density per unit volume of particle lbm/ft 3

P

P gas static pressure lbf/in. 2
g

Pr Prandtl number dimensionless

r particle radius, based on spherical particles micronp

R gas constant Btu/lbm- 'R

Re Reynolds number dimensionless

T gas static temperature ORg

T particle static temperature OR
p

u axial gas velocity component ft/sec
g

u axial particle velocity component ft/secp
v normal or radial gas velocity component ft/sec

g
v normal or radial particle velocity component ft/sec

p

x axial coordinate ft

y normal coordinate ft

a component of gas viscosity expression dimensionless

9 gas viscosity Ibm/ft-sec

go coefficient of gas viscosity expression lbm/ft-sec-(OR))a

Pg gas density ibm/ft 3

pp particle density per unit volume of gas ibm/ft3
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TABLE H-2

GENERAL INITIAL DATA

i. Two-dimensional or axisymmetric flow specification ( b= 0 orb = 1)

2. Number of particles and the density map, and radius rp of each

3. Tabulated values of f as a function of Re

4. Tabulated values of g as a function of Re

5. Tabulated values of Yg, R, Cpg, 9g, and Pr as a function of T

6. Tabulated values of T as a function of h for each particle speciesp p

7. The solidfication temperature, Tpm, of each particle species

8. The iteration accuracy criteria, K and L

Page 3
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TABLE H-3

SPECIFIC INITIAL DATA
(given at both points i and.2)

Location of points I and 2, ( x and y).

2. Gas properties at points i and 2:

u - axial velocity componentg

v - normal velocity componentg

Pg - density

P - pressure
g

T - temperature
g

3. Particle properties for each particle at points I and 2:

u - axial velocity componentp

v - normal velocity componentp

pp - density

h - enthalpyp

T - temperaturep

p - stream function
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Right Mach Line II

5Po I nt to be determined

line Left Mach Line

Initial Data
Line

Figure H-I. Numerical-Solution Characteristic Net
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I. Determine the location of points i and 2, and the gas and particle

properties at points i and 2:

Ugil Ug2 Upl, Up2

(x i , Y) Vgi' Vg2 VpIA Vp 2

(x 2 0 Y2) Pgi' Pg2 PpI' Pp2

Pgi g2 h pl hp2

Tgi) Tg 2  Tp4 Tp2

*I p t *P

2. Determine Tg m at the midpoint of line 1 -2, and, from tables of yg

and C vs Tg, determine cpg and y g at this temperature. This cpg and yg are

then considered as the constant values of cpg and yg for the entire net.

3. Calculate Ug, Vg, Up, Vp, and gtg at the midpoint of line 1-2,

1

P =-- (Pi +P 2 )

where P is any of the above properties. Calculate the gas viscosity at the mid-

point of line 1-2.

1tgm = Lo Tg m z

4. Calculate Re for each of the 6 particles at the midpoint of Line 1-2.

Re =6. 5602 x 10- "A JrPI (ug:-up + +(vg -vpm
Igm PV g pm g pm

From tabulated values of f and g vs Re, f and g for each of the particles may be

determined. Calculate A and C of the particles.
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A = 4. 1806 x 1o m r Z

5. In the following steps, note that the value of any flow property P at

point i on the initial data line 1-2 can be found as follows:

P P+ Xi- x 2 )(
Pi 2 P2 +  - x P 2 2

6. Locate point 4. For the first overall approximation of point 4, base

the location on properties at points I and 2 only. For subsequent approximations,

base the location on the average of properties at points 1, 2, and 4.

2
a 2 32. 139 -gRTg 1  a = 32. 139 y RT1 12 g g2

egi = tan (Vgl/Ug) ogz = tan (vgz/Ug2)

a= sin l(t /MI) ag z = sin "(t/M2)

I l = (2gi - ad) = + a2)

For the first overall trial on point 4, set NI4 = 911 and 9lI4 = 91l2"

On subsequent trials, j,4 and 114 4 will be known from flow properties at point 4.
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1±j4 = -- (P.I 1 + 414) 124 =  I +1114)

t4 -tan n-2 =tan 1±24

x F2 in24 - Xm 14 + (y, - Y2Z1
(iii 2 4  714)

Y4 = Y? + im 2 4 (x 4 - x 2 )

7. Locate point 3. For the first overall trial for point 4, LG4 -

(11i2 + p 1 . On subsequent trials, 1G4 will be known from flow properties at

point 4. Calculate 1±G3' During the first overall trial on point 4, assume
=1

x 3 - (x 1 + x ) as a first approximation. During subsequent overall trials on

point 3, assume that x 3 is the final value of x 3 from the previous overall trial on

point 4.

G3tn- I = -Vg1 U4

G3 =tan (Vg 3 /Ug3) 1±G4 tan (vg4/Ug4)

I ta-T3934 =- (PG3 + 9G4) 3 4 =tan? 3 4

Pass a line through point 4 with the average slope i 34 and determine a new

location for point 3 as the intersection of this line with 1-2. Note that

miZ = (y, " -2/(x" x2 ) is constant.

m12 ix 2 " ui 3 4 x 4 
+ (Y4 - Y 2)]

X 3 (m 12 - R,34 )

y3 = Z + mI1 2 (x 3 - xZ)
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Repeat the above steps, obtaining even more refined values of x3 and y3 , each

time using the last location of point 3 to calculate PLG3 until

Distance [3(n + i) -3(n)] K
Distance [i-2]

where K is an accuracy criterion and n denotes the nth trial. When the above

equality is satisfied, point 3 is located.

8. In all the equations which follow, all flow properties must be

expressed as average values. This is accomplished by replacing each property,

P, by the relationship

= F(Pi + Pi4

where Pi is the value of the property at point i and Pi4 is the value of the property

at point 4 where " is evaluated along line i-4. On the first over-all trial on point

4, all values of Pi4 are set equal to P.. On subsequent trials, actual values of

properties at point 4 will be used.

9. Set two-dimensional or axisymmetric flow parameters.

If cry = 0. 0, Ifory = 1.0,

SIGK = 0.0 SIGK = 1.0

SIGI = 1.0 SIGI = (y1 + Y4 )

SIG2 = .0 SIG2 = (Y2 + Y4 )

SIG3 = i.0 SIG3 = (y, + y2 )

10. Locate point 5 and calculate pp4 and *p4

L = -- SIG I + vpi 4 1 (x1 - x4) + [Upi + upi 4J (y4 "

L = SIG2 Vp + vp (x4 - x) + Lup + up4 (Y -

Page 9
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= [) PZ p I -IPPi Z PpZ]

(L I + L 2 )

4(I) 4 P2 -L2 [pp2+P p4)

'p4 -

Y5= [Z + 41jY
y 5 = X 2 + (yI-yz)

By use of the above steps, point 5 is located and p 4and 4 p4 are calculated.

This procedure must be repeated for each particle.

It. Evaluate the gas properties at point 4:

U (g3 + g34) (Ug3 + ug34)

- I +v +)
V = (g3 + g34) (vg3 + g 34

K1 I (u g + u gt4) (Y4 - yd1 - (Vgj + vgj4) (x4 - x,)]

K1 1  (. ugz + UgZ4) (Y4 - Y)- (vg,. + VgZ4) ( ' 2 )]

M1 = 16 .0 6 9 -ygR (TgI + Tgj4 (Y I K1 (Ug I+ Ul

=[16.069 ygR (Tg +Tg 2 )& I .K1 (ug + Uga)
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Ql 4. 0174 -y gR (Tg i + Tg4) (Pgj + Pgj4) (Vgj + vg14) (x4  Y

Q 4. 0174 gR (Tg 2 + Tg 2 4 ) (Pg2 + Pg24 ) (vg2 + Vg24) (x4 - x 2 )

Rx =-4 .07 4Y gR (Tg 1 + Tg4) (Pgj + Pg14l(Ug,+Ug 1 4 )(X 4 - xd)

RI =-4.0174 -ygR (Tg2 + Tg 2 4) (Pg2 + PgZ4)Ug2 + Ug24) (x4 - x 2 )

6

D- - : .{ A (pp,+ Pp14) (Ug3 +Ug34 "up3 "up3 4 ) (x 4 - x3 )
i= 1

+ (vg3 + Vg3 4 " v -p3  vp3 4 )(Y 4 - Y 3 )] }

I =Igj + g- + Ug14 " Upt "up1 4 )2 + (Vgi+Vgi4 " Vpl " vp 14 ) 2

+ 1.33333 C (Tpi + Tp1 4 - Tg I - Tg1 4 )]

( - 1) U2) 2

BII = I (ug2 + u - up2 - i2) + (vg 2 + vg24 vP2 vD24)

+ 1.33333 C (Tp 2 + Tp24 - Tg 2 - Tg 2 4) ]
(= -1) 2 + p42

BG= I (Ug3 + Ug34 -Up3  up3 4 ) + (Vg3 + Vg34 - v p3 - vp3 4)

+ 1.33333 C (Tp 3 + Tp34 - Tg3 - Tg 34)
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1 +-t4(S Vgj4) (gR (Tgj + Tg 4 ) K

8KSI (gj + Pg4 (Vgj g1)1

6

K, [ ABI(p Pi+ P 14) 4. 01*7 4 -y gR(T gj+ Tg91 4 )A~
i=i

Z A (ppi + Ppt 4 ) {(Ugj + Ug14 uP1 - up1 4 ) (Y4 - yd
i=1

- (vgi + vg1 4 - vpi - vp1 4 ) (x 4 - YJ (x4 - x1 )

Si 8. 0348KSIG+ (v + v R (T +K
SG 2 (PgZ Pg24) .gz g24) g + Tg2 4 ) II

6
I-2" KII . [ A B i(Pp +Pp 4 ) + - 4 .Oi 7 4  g R (Tg 2  + x

1=1

A (p2 + Pp2 4 ) { (Ug2 + Ug24 - Up2 Up24) (Y4 " Y2 )

- (Vgz + Vgz4 - v - vp 2 4 ) (x4 -X )  (x 4 -x?)

Y =S I +4,628 M- ( P g i " 93) + Q l u g t + R v gt

M1 (Pg Pg3 +g R 1jvgj

Z = S11 + 4, 628 Mu1 (Pg2 - Pg3) + QIlUg2 + RI 1Vg2

X -D + U Ug 3 +Vvg 3

T - Z.1608x 10 -4[ (Pg3+ Pg34) (x4 "- x 3 ) ] 6 [A BG( p 3+ P 34) ]
g(Pg3+Pg34) (Ug3 + Ug34) p

DENOM = [(Q -MI1 U) (RI, - M1Il) - (Q 1 - M11 v) (RI - M1 V) ]
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ug4  (Y - MIX) (R - V - (Z - M11X) (R1 - MV)

DENOM

Vg4 = [ I T (z - M11X) - (Q11 - M 1U) (Y - MiX)

DENOM

Pg 4 = Pg3 + 2.16Ox 10 -4 (X - YUg 4 -VVg 4 )

288.0 (P94 - P g3)

Pg4 = Pg3 + T + [ ygR(Tg3 + Tg3 4 )

T 44 Pg4
Tg4 Rp

Rg4

12. Evaluate the particle properties at point 4.

(u [ 4 + u g4+ 5u p45 up5)

W=A (up4 , + up.)

= A [ (v
4 + Vg5 - Vp

4 5  vp5 )
Up4 5 + p5) I

(v p45 +V p5 )

U- 2.6667x 10 - 5 AC [ (T p
4 5 + T  p  T g 4 - T1 5 )]

(up45 + up4 )

up4 = up5+ (x 4 - x 5 )

vp4 = v p5 + B(Y 4 - Y5 )

hp4 = hp5 +CU(x4 -x 5 )

T p4= f (hp 4 )
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13. Thus, the location of point 4, and all the flow properties at point 4,
are known approximately. To improve the accuracy of the approximation,

point 4 must be relocated, based on the average values of flow properties, by
using the last-determined values of the flow properties at point 4. Then, all
the flow properties can be recalculated by using these same average values.

14. Repeat step 6 to relocate point 4. Repeat step 7 to relocate point 3.

Repeat step 8 to set all Pi4 = P4 as just determined. Repeat step 9 to recal-
culate SIG i, SIG 2, and SIG 3. Repeat step 10 to recalculate pp4 

4 ' p4,

and to locate point 5. Repeat step 1i to recalculate gas properties at point 4.
Repeat step 12 to recalculate particle properties at point 4. Thus, point 4 is

relocated, and all the flow properties at point 4 have been recalculated. Apply
the following convergence test on all flow properties:

P (n + i) - Pin)
P(n + 1)

When the test has been satisfied by all flow properties, the solution for the loca-
tion and properties at point 4 is complete. If the solution does not converge, the

entire procedure must be repeated until convergence is achieved.
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APPED"4DIX I

EXAMPLE CALCULATION FOR VERIFI _CATICN OF COMPUTER PROGRAM

To check the general validity of bota the theory and accuracy of the computer

program, a numerical example was calculated for a general interior point. A

solid propellant that contains aluminum was chosen. The exhaust gases contained

0. 48 lb of aluminum oxide per lb of gas.

Particle properties were defined lisv-ting si-x discrete particle sizes (Table I-i).

The transport properties of the gas phase at charnber stagnation conditions were

defined and are given in Table 1-2. T , y , and C are given as functions of gas

temperature in Table 1-3. The temperatu=ze.enthalpy relationship for solid and

liquid aluminum oxide is shown in Table I-4 with other particle properties needed

for the solution. The f and g parameters a _s functions of Reynolds number were ob-

tained from current studies and are presernntediri Table 1-5. Values listed in this

table may be considered ap permanent valL.ues of I and g for all subsequent work.

Units of physical parameters are shown in Table 1-6.

The general and specific data, outlimmed in Appendix H, are shown in Tables

1-7 and -8, respecitvely. The example cals-culation is based on the characteristic net

shown in Figure I-I and the location and pzwoperties for the general interior point 4

are given in Table 1-9.

The gas viscosity for several propelMants was found to satisfy the relationship.

Ng = 9 T C30.787

Hence, if }Lg is known at any temperature, P 0 may be determined. Usually I.g is

known at the flame temperature as a result- of the rmochemical calculations.

In comparison of results, ug and v 9 dlecreased, and pg and P remained

about the same, and T increased, which i - almost opposite to the trend expectedg
in a perfect-gas flow. However, in the exa&.mple calculation,u p and vp increased,

SP"age t
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and pp and hp decreased, which was the expected trend. The apparent inconsist-

encies in the gas properties are due to the fact that this problem was artificially

conceived. An actual problem beginning at the supersonic starting line should

behave in a more normal manner.

The example calculation appears to verify the theory developed in the pre-

ceeding appendixes and authenticate the correctness of the computer program.
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i

Initial Data
Curve

Figure 1.1

Characteristic Net and Point 4
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Table I-I

PARTICLE PROPERTIES

Chemical Species = A1 2 0 3

Mass flow rate of particles 0.46

Mass flow rate of gas

Particle Radii, microns

"i = 0.45

Spz=0.72

" = 0.90

S = 1.15

rp5 = 1.4Z

rp 6 = 1.75
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Table 1-2

GAS TRANSPORT PROPERTIES

Pressure, Pg 1, 000.0 psia

Temperature, Tg 6, 650. 0 *R

Molecular Weight (Gas) 20.99

Gas Constant, R 72.8 ft-lbf
Ibm - 'It

Specific Heat Ratio, Y g 1.20

Constant Pressure Specific Heat, c pg77 Btu
g

Viscosity, ; g 0.2416 Ibm

Density, pg 0.2940 ibm

ft 3

Prandtl Number, Pr 0. 4996

Thermal Conductivity, kg 0.2307 Btu
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Table 1-3

Y 9AND C pgVS TEMPERATURE

T, OR yg9 Btu
gpg' Ib -'

200 1.366 0.2860'

500 1.365 0.2870

1,000 1.344 0.3130

2,000 1.297 0.3730

3,000 1.257 0.4210

4,000 1.244 0.4520

5,000 1.228 0.4700

6,000 1.212 0.4750

6,650 1.200 0.4776
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Table 1-4

PROPERTIES OF ALUMINUM OXIDE

T = 4, 172.4 °Rpmn

h = 1,051. 4 Btu

h = 1,695.5 Btu

Solid Liquid

h Btu TIR h Btu T ORhp, -- P-- T 1 p, Ibm Tp,

-42.26 0 1,695.5 4,172.4

-40.89 180 1, 745.6 4,320

0.62 540 i, 8Q7.2 4,500

37.90 720 3,043.0 8,100

80.80 900

175.5 1,260

276.9 1, 620

435.6 2,160

598.6 2,700

874.7 3,600

1,051.4 4, 172.4
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Table 1-5

f AND g PARAMETERS AS FUNCTIONS OF REYNOLDS NUMBER*

Re f Re g

0 1.0000 0 1. 0000

1 1.0000 3 1.0000

4 1.4167 10 1.3750

I0 1.7917 20 1. 7000

40 3.1667 30 2.0000

70 4.0800 40 2.1500

i00 4.7917 70 2.8000

200 6.6667 100 i.9300
500 12. 1000

1,000 16.6670

For Re > 1,000, For Re 1 100,
f = 0.016667 Re g =0. 185 (Re) 0.60

f data taken from Boundary Layer Theory by Schlichting

g data taken from Heat Transmission by McAdams
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TABLE 1-6

UNITS OF PHYSICAL PARAMETERS

C specific heat at constant pressure Btu/lbm- R

cpg specific heat ratio of the gas dimensionless

f ratio of Nu to Nu for Stokes' flow dimensionless

g ratio of Nu to Nu for Stokes' flow dimensionless

h particle enthalpy Btu/lbm
p

m particle density per unit volume of particle lbm/cu ftP

P g gas static pressure lbf/sq in.

Pr Prandtl number dimensionless

r particle radius, based on spherical particles micronP

R gas constant Btu/lbm- *R

Re Reynolds number dimensionless

T gas static temperature *R

T particle static temperature OR
p

ug axial gas velocity component ft/sec

u axial particle velocity component ft/sec

v g normal or radial gas velocity component ft/sec

v normal or radial particle velocity component ft/sec

x axial coordinate ft

a component of gas viscosity expression dimensionless

P g gas viscosity lbm/ft-sec

Ao coefficient of gas viscosity expression lbm/ft-sec(IR)a

Pg gas density lbm/cu ft

Pp particle density per unit volume of gas lbm/cu ft
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TABLE 1-7

GENERAL DATA

1. Axisymmetric flow, ar = I

2. Six aluminum-oxide particles, m =247. 61, with the radii given in
Table I-I.

3. f is given in Table 1-5

4. g is given in Table 1-5

5. Y is given in Table 1-3

6. C pg is given in Table 1-3

7. T pvs h pis given in Table 1-4

8. T m= 4, 172.4

9. Pr =0. 4996

10. L =6. 6xiO08 and a 0.787

i i. R = 72.8

12. K =L =0. 0001
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TABLE 1-8

SPECIFIC DATA AT INITIAL POINTS I AND Z*

1. x = 1.00000

Y 0 = . 60000 0.00

2. u 81  = 8,960.0 = 0.0

Vg i = 2,460.0 g 0

Pg 1 = 0.500022444 g2 0. 00018289

P Pg2  0 O. 36800

Tg = 4,010.0 T2  3, 80.

3. up1 (1) = 8,050 T 800
1 1 1) = 2 , t~ o Up 2  ( ) : 8 O

Vp 1 (1) = 2,140 () 2,200
Pp (t) = 0. 0000195hpl() = 1, 035.2 

Pp 2 (1) 0. 0000160

h 1 () =1,05.2h2 (1) = 1,029.1

Tp.(1) = 4,120. 0

Tp 2 (1) = 4, 100.0

u pl(2) = 7,650 
U 2 (2) = 7,710

v pl(2) = 1, 880 
v 2 (2) = 1,940

p1 (2) = 0.0000862 
(2) = 0.0000710

hpi (2) = 1, 054.0 
hp2 (2) = 1, 052.0Tpi (2) = 4, 172.4 
T 2 (2) = 4,172.4

p2 (3) = 7, Z20.
Uvp (3) = 7,220 

Up2 (3)= 7, 280
Vp 1  (3) = 1,640Vp 

(3 1, 0P p2 (3): 1, 700
pp1 (3) = 0. 0000502 

PPp2 (3) = 0. 0000412
hp1 (3) = 1,300.0 

h (3) = 1,295.0
T p (3) = 4, 172.4 Tp

p2 (3) =4, 172. 4
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TABLE I-8 (cont.)

Up1 (4) = 6,790 up 2 (4) = 6,850

Vpi (4) = 1,420 vp 2 (4) = 1, 480

pp i (4)= 0. 0000302 Pp2 (4) = 0.0000249

hp (4) = 1,696.0 hp 2 (4) = 1,694.5

Tpt (4) = 4,173.9 Tp 2 (4) =4,172.4

up1 (5) = 6,380 up2 (5) = 6,420

Vp1 (5) = 1,225 vp2 (5) = 1,265

Ppi (5) = 0. 0000211 Pp2 (5) = 0.0000173

h p (5) = 1,697.3 hp2 (5) = 1,696.0

T31 (5) = 4, 177.7 Tp 2 (5) = 4, 173.9

up1 (6) = 5,930 up2 (6) =5, 970

Vpj (6) 1,030 vp2 (6) = 1,070
p1 (6) = 0.0000118 Pp2 (6)= 0.0000n97

hp, (6) = 1,779.8 hp2 (6) = 1,773.0

Tp, (6) = 4,420.0 Tp 2 (6) = 4, 400.0

* The location and properties of point 4 (Figure I-I and Table 1-8) for the above

case are given in Table 1-9 in the format printed out by the computer.
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